Publications by authors named "Gail P Ferguson"

How DNA metabolism is adapted to survival of organisms such as the bacterium Photobacterium profundum SS9 at high pressure is unknown. Previously, a high pressure-sensitive P. profundum SS9 transposon mutant (FL31) was identified, with an insertion in a putative rctB gene.

View Article and Find Full Text PDF

yaiW is a previously uncharacterized gene found in enteric bacteria that is of particular interest because it is located adjacent to the sbmA gene, whose bacA ortholog is required for Sinorhizobium meliloti symbiosis and Brucella abortus pathogenesis. We show that yaiW is cotranscribed with sbmA in Escherichia coli and Salmonella enterica serovar Typhi and Typhimurium strains. We present evidence that the YaiW is a palmitate-modified surface exposed outer membrane lipoprotein.

View Article and Find Full Text PDF

Rhizobial soil bacteria can form a symbiosis with legumes in which the bacteria fix atmospheric nitrogen into ammonia that can be utilized by the host. The plant, in turn, supplies the rhizobia with a carbon source. After infecting the host cell, the bacteria differentiate into a distinct bacteroid form, which is able to fix nitrogen.

View Article and Find Full Text PDF

In bacteria, the production of exopolysaccharides--polysaccharides secreted by the cells into their growth medium--is integral to the formation of aggregates and biofilms. These exopolysaccharides often form part of a matrix that holds the cells together. Investigating the bacterium Sinorhizobium meliloti, we found that a mutant that overproduces the exopolysaccharide succinoglycan showed enhanced aggregation, resulting in phase separation of the cultures.

View Article and Find Full Text PDF
Article Synopsis
  • Certain legumes, like Medicago truncatula, produce over 300 nodule-specific cysteine-rich peptides (NCR AMPs) that help differentiate the bacterium Sinorhizobium meliloti into a nitrogen-fixing form within root nodules.
  • * NCR AMPs exhibit antimicrobial properties and are influenced by their disulfide bridges, but alterations in their cysteine structure significantly reduce their effectiveness against S. meliloti.
  • * The bacterial protein BacA is crucial for protecting S. meliloti from the effects of oxidized NCR247, indicating that these peptides and BacA play key roles in the bacterial response within legumes.
View Article and Find Full Text PDF

Background: Endogenous nitric oxide (NO) kills bacteria and other organisms as part of the innate immune response. When nitrite is exposed to low pH, NO is generated and has been used as an NO delivery system to treat skin infections. We demonstrated eradication of MRSA carriage from wounds using a topical formulation of citric acid (4.

View Article and Find Full Text PDF

Sinorhizobium meliloti differentiates into persisting, nitrogen-fixing bacteroids within root nodules of the legume Medicago truncatula. Nodule-specific cysteine-rich antimicrobial peptides (NCR AMPs) and the bacterial BacA protein are essential for bacteroid development. However, the bacterial factors central to the NCR AMP response and the in planta role of BacA are unknown.

View Article and Find Full Text PDF

We study the migration of chemotactic wild-type Escherichia coli populations in semisolid (soft) agar in the concentration range C = 0.15-0.5% (w/v).

View Article and Find Full Text PDF

Sinorhizobium meliloti forms a symbiosis with the legume alfalfa, whereby it differentiates into a nitrogen-fixing bacteroid. The lipid A species of S. meliloti are modified with very long-chain fatty acids (VLCFAs), which play a central role in bacteroid development.

View Article and Find Full Text PDF

Brucella species are the causative agents of one of the most prevalent zoonotic diseases: brucellosis. Infections by Brucella species cause major economic losses in agriculture, leading to abortions in infected animals and resulting in a severe, although rarely lethal, debilitating disease in humans. Brucella species persist as intracellular pathogens that manage to effectively evade recognition by the host's immune system.

View Article and Find Full Text PDF

BacA proteins play key roles in the chronic intracellular infections of Sinorhizobium meliloti, Brucella abortus and Mycobacterium tuberculosis within their respective hosts. S. meliloti, B.

View Article and Find Full Text PDF

BacA is an integral membrane protein, the mutation of which leads to increased resistance to the antimicrobial peptides bleomycin and Bac7(1-35) and a greater sensitivity to SDS and vancomycin in Rhizobium leguminosarum bv. viciae, R. leguminosarum bv.

View Article and Find Full Text PDF

The deep-sea bacterium, Photobacterium profundum SS9, has been adopted as a model organism to understand the molecular basis of cold-adapted high-pressure-loving (piezophilic) growth. Despite growing optimally at 28 MPa (15 degrees C), P. profundum SS9 can grow over a wide range of pressures and temperatures.

View Article and Find Full Text PDF

The molecular mechanism(s) by which deep-sea bacteria grow optimally under high hydrostatic pressure at low temperatures is poorly understood. To gain further insight into the mechanism(s), a previous study screened transposon mutant libraries of the deep-sea bacterium Photobacterium profundum SS9 and identified mutants which exhibited alterations in growth at high pressure relative to that of the parent strain. Two of these mutants, FL23 (PBPRA3229::mini-Tn10) and FL28 (PBPRA1039::mini-Tn10), were found to have high-pressure sensitivity and enhanced-growth phenotypes, respectively.

View Article and Find Full Text PDF

Free-living Sinorhizobium meliloti lpxXL and acpXL mutants lack lipid A very-long-chain fatty acids (VLCFAs) and have reduced competitiveness in alfalfa. We demonstrate that LpxXL and AcpXL play important but distinct roles in bacteroid development and that LpxXL is essential for the modification of S. meliloti bacteroid lipid A with VLCFAs.

View Article and Find Full Text PDF

The inner membrane BacA protein is essential for the establishment of chronic intracellular infections by Sinorhizobium meliloti and Brucella abortus within plant and mammalian hosts, respectively. In their free-living state, S. meliloti and B.

View Article and Find Full Text PDF

Sinorhizobium meliloti is a beneficial legume symbiont, closely related to Brucella species, which are chronic mammalian pathogens. We discovered that the S. meliloti MsbA2 protein is essential to ensure the symbiotic interaction with the host plant, alfalfa.

View Article and Find Full Text PDF

Sinorhizobium meliloti bacA mutants are symbiotically defective, deoxycholate sensitive, and bleomycin resistant. We show that the bleomycin resistance phenotype is independent of the lipid A alteration and that the changes giving rise to both phenotypes are likely to be involved in the inability of bacA mutants to persist within their hosts.

View Article and Find Full Text PDF

Sinorhizobium meliloti, a legume symbiont and Brucella abortus, a phylogenetically related mammalian pathogen, both require their BacA proteins to establish chronic intracellular infections in their respective hosts. The lipid A molecules of S. meliloti and B.

View Article and Find Full Text PDF

Sinorhizobium meliloti, a legume symbiont, and Brucella abortus, a phylogenetically related mammalian pathogen, both require the bacterial-encoded BacA protein to establish chronic intracellular infections in their respective hosts. We found that the bacterial BacA proteins share sequence similarity with a family of eukaryotic peroxisomal-membrane proteins, including the human adrenoleukodystrophy protein, required for the efficient transport of very-long-chain fatty acids out of the cytoplasm. This insight, along with the increased sensitivity of BacA-deficient mutants to detergents and cell envelope-disrupting agents, led us to discover that BacA affects the very-long-chain fatty acid (27-OHC28:0 and 29-OHC30:0) content of both Sinorhizobium and Brucella lipid A.

View Article and Find Full Text PDF

Long-term residence of the brucellae in the phagosomal compartment of host macrophages is essential to their ability to produce disease in both natural and experimental hosts. Correspondingly, the Brucella spp. appear to be well adapted to resist the multiple environmental stresses they encounter in their intracellular home.

View Article and Find Full Text PDF

The BacA protein is essential for the long-term survival of Sinorhizobium meliloti and Brucella abortus within acidic compartments in plant and animal cells, respectively. Since both the S. meliloti and B.

View Article and Find Full Text PDF

Dichloromethane (DCM) dehalogenase converts DCM to formaldehyde via the formation of glutathione metabolites and generates 2 mol HCl per mol DCM metabolized. Growth of Escherichia coli expressing DCM dehalogenase was immediately and severely inhibited during conversion of 0.3 mM DCM.

View Article and Find Full Text PDF