The antibody-drug conjugate (ADC) is a well-validated modality for the cell-specific delivery of small molecules with impact expanding rapidly beyond their originally-intended purpose of treating cancer. However, antibody-mediated delivery (AMD) remains inefficient, limiting its applicability to targeting highly potent payloads to cells with high antigen expression. Maximizing the number of payloads delivered per antibody is one key way in which delivery efficiency can be improved, although this has been challenging to carry out; with few exceptions, increasing the drug-to-antibody ratio (DAR) above ∼4 typically destroys the biophysical properties and efficacy for ADCs.
View Article and Find Full Text PDFDuocarmycins [including cyclopropyl pyrroloindole (CPI) or cyclopropyl benzoindole (CBI)] are a class of DNA minor-groove alkylators and seco-CPI/CBIs are synthetic pro-forms that can spirocyclize to CPI/CBI. Bis-CPI/CBIs are potential drug candidates because of their enhanced cytotoxicity from DNA crosslinking, but it is difficult to analyze them for structure-activity correlation because of their DNA reactivity. To study their DNA alkylation, neutral thermal hydrolysis has been frequently applied to process depurination.
View Article and Find Full Text PDFThe incorporation of cysteines into antibodies by mutagenesis allows for the direct conjugation of small molecules to specific sites on the antibody via disulfide bonds. The stability of the disulfide bond linkage between the small molecule and the antibody is highly dependent on the location of the engineered cysteine in either the heavy chain (HC) or the light chain (LC) of the antibody. Here, we explore the basis for this site-dependent stability.
View Article and Find Full Text PDFMonoclonal antibody therapeutics have been approved for over 30 targets and diseases, most commonly cancer. Antibodies have become the new backbone of the pharmaceutical industry, which previously relied on small molecules. Compared with small molecules, monoclonal antibodies (mAbs) have exquisite target selectivity and hence less toxicity as a result of binding other targets.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2015
The cryptophycins are a potent class of cytotoxic agents that were evaluated as antibody drug conjugate (ADC) payloads. Free cryptophycin analog 1 displayed cell activity an order of magnitude more potent than approved ADC payloads MMAE and DM1. This potency increase was also reflected in the activity of the cryptophycin ADCs, attached via a either cleavable or non-cleavable linker.
View Article and Find Full Text PDFTrastuzumab (Herceptin(®)) is currently used as a treatment for patients whose breast tumors overexpress HER2/ErbB2. Trastuzumab-DM1 (T-DM1, trastuzumab emtansine) is designed to combine the clinical benefits of trastuzumab with a potent microtubule-disrupting drug, DM1 (a maytansine derivative). Currently T-DM1 is being tested in multiple clinical trials.
View Article and Find Full Text PDFThe vascular endothelium was once thought to function primarily in nutrient and oxygen delivery, but recent evidence suggests that it may play a broader role in tissue homeostasis. To explore the role of sinusoidal endothelial cells (LSECs) in the adult liver, we studied the effects of vascular endothelial growth factor (VEGF) receptor activation on mouse hepatocyte growth. Delivery of VEGF-A increased liver mass in mice but did not stimulate growth of hepatocytes in vitro, unless LSECs were also present in the culture.
View Article and Find Full Text PDFHormone-independent tumor growth and metastasis are associated with increased mortality in human prostate cancer. In this study, we evaluate a potential role for ligand-mediated activation of HER2 receptor tyrosine kinase in androgen-independent prostate cancers. HER2, HER3, and epidermal growth factor receptor were detected in the androgen-independent cell line 22Rv1.
View Article and Find Full Text PDF