The goal of this study was to develop a peptide which could use the toxic effects of amyloid, a substance which is the hallmark of over 25 known human diseases, to selectively kill cancer cells. Here we demonstrate that two separate amyloid-forming hexapeptides, one from the microtubule associated protein Tau involved in formation of paired helical filaments of Alzheimer's disease, and the other an amyloid forming sequence from apolipoprotein A, when conjugated to a cell penetrating peptide (CPP) sequence, form toxic oligomers which are stable for up to 14 h and able to enter cells by a combination of endocytosis and transduction. The amyloid peptide conjugates showed selective cytotoxicity to breast cancer, neuroblastoma and cervical cancer cells in culture compared to normal cells.
View Article and Find Full Text PDFACS Chem Neurosci
December 2017
In the present study, a cell penetrating peptide (CPP)-amyloid conjugate was prepared (T-peptide), where the amyloid-forming sequence was homologous to a nucleating sequence from human Tau protein (VQIVYK). Kinetic and biophysical studies showed the peptide formed long-lived oligomers which were taken up by endocytosis and localized in perinuclear vesicles and in the cytoplasm of murine hippocampal neuroblastoma cells and human HeLa cells. Thioflavin S (ThS) staining of amyloid colocalized with pathological phosphorylated Tau, suggesting that the peptide was able to seed endogenous wild-type Tau.
View Article and Find Full Text PDFMitochondrial structural and functional alterations appear to play to an important role in the pathogenesis of Alzheimer's disease (AD). In the present study, we used a quantitative comparative proteomic profiling approach to analyze changes in the mitochondrial proteome in AD. A triple transgenic mouse model of AD (3xTg-AD) which harbors mutations in three human transgenes, APP(Swe), PS1(M146V) and Tau(P301L), was used in these experiments.
View Article and Find Full Text PDFOur laboratory has been studying the transcriptional regulation of the nuclear gene (ATPA) that encodes the alpha-subunit of the mammalian mitochondrial F1F0 ATP synthase complex. We have previously determined that the regulatory factor, upstream stimulatory factor 2 (USF2), can stimulate transcription of the ATPA gene through the cis-acting regulatory element 1 in the upstream promoter of this gene. In this study, we used the yeast one-hybrid screening method to identify another factor, COUP-TFII/ARP-1, which also binds to the ATPA cis-acting regulatory element 1.
View Article and Find Full Text PDF