Publications by authors named "Gaijing Han"

Genome-wide association studies have identified many single nucleotide polymorphisms (SNPs) associated with erythrocyte traits. However, the functional variants and their working mechanisms remain largely unknown. Here, we reported that the SNP of rs80207740, which was associated with red blood cell (RBC) volume and hemoglobin content across populations, conferred enhancer activity to XPO7 gene via allele-differentially binding to Ikaros family zinc finger 1 (IKZF1).

View Article and Find Full Text PDF
Article Synopsis
  • - The regulation of mRNA after transcription is vital for gene expression, and disruptions can lead to developmental issues and diseases, hence researching post-transcriptional regulators is important for understanding these processes.
  • - The study identifies FAM46C, a non-canonical RNA poly(A) polymerase, as essential for red blood cell development, with its expression peaking during late erythroid stages and regulated by a specific enhancer.
  • - FAM46C helps stabilize mRNA and directs erythroid differentiation, specifically targeting components related to lysosomes and mitochondria, which is crucial for the maturation of red blood cells and maintaining cellular balance.
View Article and Find Full Text PDF

In β-thalassemia, free α-globin chains are unstable and tend to aggregate or degrade, releasing toxic heme, porphyrins and iron, which produce reactive oxygen species (ROS). α-Hemoglobin-stabilizing protein (AHSP) is a potential modifier of β-thalassemia due to its ability to escort free α-globin and inhibit the cellular production of ROS. The influence of AHSP on the redox equilibrium raises the question of whether AHSP expression is regulated by components of ROS signaling pathways and/or canonical redox proteins.

View Article and Find Full Text PDF

Metformin (MET) is a diabetes drug that activates AMP-activated protein kinase (AMPK), and is suggested to have anticancer efficacy. Here, we investigated the role of AMPK signalling in prolactinoma (PRLoma), with particular respect to MET and bromocriptine (BC) as a PRLoma treatment. We analysed AMPK phosphorylation, dopamine D2 receptor (D2R), and oestrogen receptor (ER) expression in both BC-sensitive and -resistant PRLoma samples; effects of the AMPK agonist MET (alone or with BC) on in vitro proliferation and apoptosis, xenograft growth and prolactin (PRL) secretion of BC-sensitive and -resistant cells, and ER expression in xenografts.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide due to its chemoresistance and poor prognosis. Currently, there is a lack of effective small molecule drugs for the treatment of ESCC. Microtubules are an attractive target for cancer therapy since they play a central role in various fundamental cell functions.

View Article and Find Full Text PDF

Purpose: Esophageal squamous cell carcinoma (ESCC) is a serious malignant tumor that affects human health. We analyzed the correlation between serum stathmin level and ESCC and elucidated the molecular mechanisms of stathmin's promotion of ESCC cell invasion and metastasis.

Methods: Stathmin level in ESCC and healthy control serum were detected by enzyme-linked immunosorbent assay (ELISA), and the clinical parameters were analyzed.

View Article and Find Full Text PDF

Here we demonstrated that sepantronium bromide (YM155), a survivin suppressant, inhibited esophageal squamous-cell carcinoma (ESCC) growth in mice bearing human ESCC xenografts without affecting body weight. In cell culture, YM155 decreased survivin levels and caused PARP-1 activation, poly-ADP polymer formation, and AIF translocation from the cytosol to the nucleus. Genetic knockdown of PARP-1 or AIF abrogated YM155-induced parthanatos cell death.

View Article and Find Full Text PDF