Rattan is a multi-purpose plant resource in the tropical forest treasure house. With its good technological characteristics, it has become an excellent material for the preparation of industry. The original rattan is an important forest product second only to wood and bamboo.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Nanocellulose aerogels are usually produced by methods such as freeze-drying or critical point drying, which have the disadvantages of high equipment requirements and high energy consumption. In this study, the Fe-containing ethanol bath was employed to dissolve and replace ice crystals in the prefrozen precursors of cellulose-based aerogels. The method achieved both solvent substitution and metal ion complexation and successfully prepared nanocellulose aerogels with a total solid concentration of 2.
View Article and Find Full Text PDFHerein, we used a one-pot method to fabricate a novel MOF-on-MOF adsorbent, namely MOF(Zr)-on-MOF(Ce). The adsorbent demonstrated a high maximum fluoride-ions capture capacity of 164.47 mg g.
View Article and Find Full Text PDFAs a unique structural form, helical structures have a wide range of application prospects. In the field of biology, helical structures are essential for the function of biological macromolecules such as proteins, so the study of helical structures can help to deeply understand life phenomena and develop new biotechnology. In materials science, helical structures can give rise to special physical and chemical properties, such as in the case of spiral nanotubes, helical fibers, , which are expected to be used in energy, environment, medical and other fields.
View Article and Find Full Text PDFFluorescent composites have widespread applications in many aspects. Wood-derived cellulose is a renewable, easily processed and biodegradable, and cellulose-based fluorescent composites are highly favored for in different fields. However, the existing cellulose-based fluorescent composites still have many urgent problems to be solved, such as unstable luminescence properties and easy shedding of luminescent substances, and the development of their practical applications is still a formidable challenge.
View Article and Find Full Text PDFChem Soc Rev
September 2024
Cellulose, as the most abundant natural polymer on Earth, has long captured researchers' attention due to its high strength and modulus. Nevertheless, transferring its exceptional mechanical properties to macroscopic 2D and 3D materials poses numerous challenges. This review provides an overview of the research progress in the development of strong cellulose-based materials using both the "bottom-up" and "top-down" approaches.
View Article and Find Full Text PDFNatural polyphenolic compounds play a vital role in nature and are widely utilized as building blocks in the fabrication of emerging functional nanomaterials. Although diverse fabrication methodologies are developed in recent years, the challenges of purification, uncontrollable reaction processes and additional additives persist. Herein, a modular and facile methodology is reported toward the fabrication of natural polyphenolic nanoparticles.
View Article and Find Full Text PDFIn nature, proteins possess the remarkable ability to sense and respond to mechanical forces, thereby triggering various biological events, such as bone remodeling and muscle regeneration. However, in synthetic systems, harnessing the mechanical force to induce material growth still remains a challenge. In this study, we aimed to utilize low-frequency ultrasound (US) to activate horseradish peroxidase (HRP) and catalyze free radical polymerization.
View Article and Find Full Text PDFIn the current years, polydopamine nanoparticles (PDA NPs) have been extensively investigated as an eumelanin mimic. However, unlike natural eumelanin, PDA NPs contain no 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-derived units and may be limited in certain intrinsic properties; superior eumelanin-like nanomaterials are still actively being sought. Levodopa (-DOPA) is a natural eumelanin precursor and expected to convert into DHICA and further remain within the final product through covalent or physical interactions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2024
Nanocellulose, as a nanoscale polymer material, has garnered significant attention worldwide due to its numerous advantages including excellent biocompatibility, thermal stability, non-toxicity, large specific surface area, and good hydrophilicity. Various methods can be employed for the preparation of nanocellulose. Traditional approaches such as mechanical, chemical, and biological methods possess their own distinct characteristics and limitations.
View Article and Find Full Text PDFDue to the rapid development of intelligent technology and the pursuit of green environmental protection, responsive materials with single response and actuation can no longer meet the requirements of modern technology for intelligence, diversification, and environmental friendliness. Therefore, intelligent responsive materials have received much attention. In recent years, with the development of new materials and technologies, cellulose materials have become increasingly used as responsive materials due to their advantages of sustainability and renewability.
View Article and Find Full Text PDFCompared with traditional metal materials, carbon-based materials have the advantages of low density, high conductivity, good chemical stability, etc., and can be used as reliable alternative materials in various fields. Among them, the carbon fiber conductive network constructed by electrospinning technology has the advantages of high porosity, high specific surface area and rich heterogeneous interface.
View Article and Find Full Text PDFPolyelectrolyte has wide applications in biomedicine, agriculture and soft robotics. However, it is among one of the least understood physical systems because of the complex interplay of electrostatics and polymer nature. In this review, a comprehensive description is presented on experimental and theoretical studies of the activity coefficient, one of the most important thermodynamic properties of polyelectrolyte.
View Article and Find Full Text PDFSolar-driven vapor generation has emerged as a promising wastewater remediation technology for clean water production. However, the complicated and diversified contaminants in wastewater still restrict its practical applications. Herein, inspired by the melanin in nature, a robust aerogel was facilely fabricated for multifunctional water remediation a one-pot condensation copolymerization of 5,6-dihydroxyindole and formaldehyde.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2023
The interfacial solar desalination has been considered a promising method to address the worldwide water crisis without sophisticated infrastructures and additional energy consumption. Although various advanced solar evaporators have been developed, their practical applications are still restricted by the unsustainable materials and the difficulty of precise customization for structure to escort high solar-thermal efficiency. To address these issues, we employed two kinds of naturally occurring molecules, tannic acid and iron (III), to construct a low-cost, highly efficient and durable interfacial solar evaporator by three-dimensional (3D) printing.
View Article and Find Full Text PDFHeavy metal ions in industrial sewage constitute a serious threat to human health. Nanocellulose-based adsorbents are emerging as an environmentally friendly material platform for heavy metal ion removal based on their unique properties, which include high specific surface area, excellent mechanical properties, and biocompatibility. In this review, we cover the most recent works on nanocellulose-based adsorbents for heavy metal ion removal and present an in-depth discussion of the modification technologies for nanocellulose in the process of assembling high-performance heavy ion adsorbents.
View Article and Find Full Text PDFStimulus-responsive hydrogels are an important member of smart materials owing to their reversibility, soft/wet properties, and biocompatibility, which have a wide range of applications in the field of intelligent actuations. However, poor mechanical property and complicated fabrication process limit their further applications. Herein, we report a light-responsive tissue paper/hydrogel composite actuator which was developed by combining inkjet-printed tissue paper with poly(N-isopropylacrylamide) (PNIPAM) hydrogel through simple in situ polymerization.
View Article and Find Full Text PDFIn this study, ZnO nanoparticles were prepared by a hydrothermal method with varying the reaction times, material ratios and reaction temperatures. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD) and Fourier infrared spectroscopy (FTIR). It was shown that the material ratio significantly affected the structure and morphology of the synthesized ZnO nanoparticles, and then the uneven nano-octahedral structure, uniform nano-octahedral structure, nano-tubular structure, and nano-sheet structure could be obtained successively.
View Article and Find Full Text PDFSolar-driven steam generation has been considered as a prevalent and sustainable approach to obtain clean fresh water. However, the presence of microorganisms in seawater may cause the biofouling and degradation of polymeric photothermal materials and clog the channels for water transportation, leading to a decrease in solar evaporation efficiency during long-term usage. Herein, we have reported a facile strategy to construct a robust cellulose membrane device coated by tobramycin-doped polydopamine nanoparticles (PDA/TOB@CA).
View Article and Find Full Text PDFNanomaterials (Basel)
September 2022
Food packaging nowadays is not only essential to preserve food from being contaminated and damaged, but also to comply with science develop and technology advances. New functional packaging materials with degradable features will become a hot spot in the future. By far, plastic is the most common packaging material, but plastic waste has caused immeasurable damage to the environment.
View Article and Find Full Text PDFThe scarcity of clean water has become a global environmental problem which constrains the development of public health, economy, and sustainability. In recent years, natural polyphenols have drawn increasing interests as promising platforms towards diverse water remediation composites and devices, owing to their abundant and renewable resource in nature, highly active surface chemistry, and multifunctionality. This review aims to summarize the most recent advances and highlights of natural polyphenol-based composite materials (, nanofibers, membranes, particles, and hydrogels) for water remediation, by focusing on their structural and functional features, as well as their diversified applications including membrane filtration, solar distillation, adsorption, advanced oxidation processes, and disinfection.
View Article and Find Full Text PDFThe simple design of a high-energy-density device with high-mass-loading electrode has attracted much attention but is challenging. Manganese oxide (MnO ) with its low cost and excellent electrochemical performance shows high potential for practical application in this regard. Hence, the high-mass-loading of the MnO electrode with wood-derived carbon (WC) as the current collector is reported through a convenient hydrothermal reaction for high-energy-density devices.
View Article and Find Full Text PDFWhile low-dimensional (1D and 2D) polycatechol materials have been widely described for a range of biomedical and surface engineering applications, very few examples have been explored that focus on the construction of functional polycatechol nanoparticles. Herein, we report the facile fabrication of a series of polycatechol nanoparticles via a general and robust strategy based on the one-step oxidation reaction. IO-induced catechol redox chemistry could facilitate the precise size control of the resulting nanoparticles and also allow the successful transfer and amplification of microscopic monomer function into macroscopic polycatechol material properties.
View Article and Find Full Text PDFUsing shape-persistent Janus particles to construct poly(Janus particle)s and studying their self-assembly behaviors are of great interest, but remain largely unexplored. In this work, we reported a type of amphiphiles constructed by the ring-opening metathesis polymerization of nonspherical molecular Janus particles (APOSS-BPOSS), called poly(Janus particle)s (poly(APOSS-BPOSS), = 12, 17, 22, and 35, and = 35-100 kg/mol). Unlike traditional bottlebrush polymers consisting of flexible side chains, these poly(Janus particles) consist of rigid hydrophilic and hydrophobic polyhedral oligomeric silsesquioxane (POSS) cages as side chains.
View Article and Find Full Text PDFConstructing lightweight and porous adsorbents which can effectively remove dye contaminants is of great significance in the field of the sewage treatment. In this work, anisotropic cellulose nanofibril (CNF) composite sponges assisted by rectorites are fabricated through directional freeze-drying. The resulted composite sponge exhibits the superior saturated adsorption capacity and removal efficiency of 120.
View Article and Find Full Text PDF