Publications by authors named "Gaia Lugano"

Studying the biomechanical properties of biological tissue is crucial to improve our understanding of disease pathogenesis. The biomechanical characteristics of the cornea, sclera and the optic nerve head have been well addressed with an extensive literature and an in-depth understanding of their significance whilst, in comparison, knowledge of the retina and choroid is relatively limited. Knowledge of these tissues is important not only to clarify the underlying pathogenesis of a wide variety of retinal and vitreoretinal diseases, including age-related macular degeneration, hereditary retinal dystrophies and vitreoretinal interface diseases but also to optimise the surgical handling of retinal tissues and, potentially, the design and properties of implantable retinal prostheses and subretinal therapies.

View Article and Find Full Text PDF

Aims: In the context of tendon degenerative disorders, the need for innovative conservative treatments that can improve the intrinsic healing potential of tendon tissue is progressively increasing. In this study, the role of pulsed electromagnetic fields (PEMFs) in improving the tendon healing process was evaluated in a rat model of collagenase-induced Achilles tendinopathy.

Methods: A total of 68 Sprague Dawley rats received a single injection of type I collagenase in Achilles tendons to induce the tendinopathy and then were daily exposed to PEMFs (1.

View Article and Find Full Text PDF

Aim Of The Study: Tendons are exposed to mechanical stress constantly during movements and thus they are frequently subjected to injuries. Rotator cuff tears are common musculoskeletal disorders, mainly involving the supraspinatus tendon. The characterization of the tenocytes derived from this tendon and the comparison to cells isolated from the long head of the biceps tendon obtained from donors affected by rotator cuff disease may improve the knowledge of the cellular mechanisms involved in the initiation and progression of the pathology.

View Article and Find Full Text PDF

Purpose: Rotator cuff tears are common musculoskeletal disorders, and surgical repair is characterized by a high rate of re-tear. Regenerative medicine strategies, in particular mesenchymal stem cell-based therapies, have been proposed to enhance tendon healing and reduce the re-tear rate. Autologous microfragmented adipose tissue (μFAT) allows for the clinical application of cell therapies and showed the ability to improve tenocyte proliferation and viability in previous in vitro assessments.

View Article and Find Full Text PDF

The ability to produce rapid, cost-effective and human-relevant data has the potential to accelerate the development of new drug delivery systems. Intraocular drug delivery is an area undergoing rapid expansion, due to the increase in sight-threatening diseases linked to increasing age and lifestyle factors. The outer blood-retinal barrier (OBRB) is important in this area of drug delivery, as it separates the eye from the systemic blood flow.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) emerged as a promising therapy for tendon pathologies. Microfragmented adipose tissue (FAT) represents a convenient autologous product for the application of MSC-based therapies in the clinical setting. In the present study, the ability of FAT to counteract inflammatory processes induced by IL-1 on human tendon cells (TCs) was evaluated.

View Article and Find Full Text PDF

 The aim of the present study was to evaluate different methods for the intraoperative seeding of chondrocytes on commercially available collagen I/III matrix, in the context of cell-seeded collagen matrix-supported autologous chondrocyte transplantation (ACT-CS).  Human chondrocytes were enzymatically isolated from cartilage portion of discarded femoral heads of patients who underwent total hip replacement. Chondrocytes were cultured until passage 3, and then used for the experiments.

View Article and Find Full Text PDF

During the last two decades, mesenchymal stem cells (MSCs) gained a place of privilege in the field of regenerative medicine. Recently, extracellular vesicles (EVs) have been identified as major mediators of MSCs immunosuppressive as well as pro-regenerative activities in many disease models, including inflammatory/degenerative conditions as joint diseases and osteoarthritis. In order to shed light on EVs potential, a rigorous profiling of embedded proteins, lipids and nucleic acids (mRNA/miRNA) is mandatory.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are promising tools for cell-based therapies due to their homing to injury sites, where they secrete bioactive factors such as cytokines, lipids, and nucleic acids, either free or conveyed within extracellular vesicles (EVs). Depending on the local environment, MSCs' therapeutic value may be modulated, determining their fate and cell behavior. Inflammatory signals may induce critical changes on both the phenotype and secretory portfolio.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is the most prevalent joint disease, and to date, no options for effective tissue repair and restoration are available. With the aim of developing new therapies, the impact of mesenchymal stem cells (MSCs) has been explored, and the efficacy of MSCs started to be deciphered. A strong paracrine capacity relying on both secreted and vesicle-embedded (EVs) protein or nucleic acid-based factors has been proposed as the principal mechanism that contributes to tissue repair.

View Article and Find Full Text PDF

Osteoarthritis (OA) leads to chronic pain and disability, and traditional conservative treatments are not effective in the long term. The intra-articular injection of mesenchymal stem cells (MSCs) is considered a novel therapy for OA whose efficacy mainly relies on the adaptive release of paracrine molecules which are either soluble or extracellular vesicles (EVs) embedded. The correct quantification of EV-miRNAs using reliable reference genes (RGs) is a crucial step in optimizing this future therapeutic cell-free approach.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers designed lyophilized fibroin-coated alginate microcarriers (LFAMs) to deliver mesenchymal stem cells (MSCs) and optimized the conditions for cell adhesion using a Design of Experiment (DoE) approach.
  • The study tested various factors including stirring speed, culture dynamics, and cell suspension volume in a bioreactor, finding that intermittent dynamic culture was the most crucial for enhancing cell adhesion, while the volume and speed also played significant roles.
  • The optimal conditions identified (98 minutes incubation, 12.3 RPM speed, and 401.5 µL volume) were validated with both human adipose-derived and bone marrow stem cells, showing promising results for using microcarriers in regenerative medicine
View Article and Find Full Text PDF