Publications by authors named "Gaia E Berto"

Article Synopsis
  • Brain size and neural cell diversity depend on how multipotent neural progenitor cells (NPCs) grow and specialize, with mistakes in this process causing hereditary microcephaly (MCPH), which leads to smaller brain sizes and intellectual disabilities.
  • Research identified specific genetic variants related to MCPH, but the exact role of CIT protein activity in brain development was unclear, prompting the creation of mouse models for study.
  • Findings revealed that while the mouse models didn't mimic human microcephaly, they did show signs of cell damage and abnormalities; human organoids created from the models exhibited loss of structural complexity and issues with cell division, highlighting the importance of CIT functions in human brain development.
View Article and Find Full Text PDF

Goldberg-Shprintzen disease (GOSHS) is a rare microcephaly syndrome accompanied by intellectual disability, dysmorphic facial features, peripheral neuropathy and Hirschsprung disease. It is associated with recessive mutations in the gene encoding kinesin family member 1-binding protein (KIF1BP, also known as KIFBP). The encoded protein regulates axon microtubules dynamics, kinesin attachment and mitochondrial biogenesis, but it is not clear how its loss could lead to microcephaly.

View Article and Find Full Text PDF

Spinal cord injury (SCI) affects 6 million people worldwide with no available treatment. Despite research advances, the inherent poor regeneration potential of the central nervous system remains a major hurdle. Small RNAs (sRNAs) 19-33 nucleotides in length are a set of non-coding RNA molecules that regulate gene expression and have emerged as key players in regulating cellular events occurring after SCI.

View Article and Find Full Text PDF

Medulloblastoma (MB) is the most common malignant brain tumor in children, and it is classified into four biological subgroups: WNT, Sonic Hedgehog (SHH), Group 3 and Group 4. The current treatment is surgery, followed by irradiation and chemotherapy. Unfortunately, these therapies are only partially effective.

View Article and Find Full Text PDF

Down Syndrome (DS) is the most common genetic disorder associated with intellectual disability (ID). Excitatory neurons of DS patients and mouse models show decreased size of dendritic field and reduction of spine density. Whether these defects are caused by cell autonomous alterations or by abnormal multicellular circuitry is still unknown.

View Article and Find Full Text PDF

Glioblastoma multiforme and medulloblastoma are the most frequent high-grade brain tumors in adults and children, respectively. Standard therapies for these cancers are mainly based on surgical resection, radiotherapy, and chemotherapy. However, intrinsic or acquired resistance to treatment occurs almost invariably in the first case, and side effects are unacceptable in the second.

View Article and Find Full Text PDF

The authors wish to point out that the name of the first author is appearing incorrectly on Pubmed: it should be El Ghouzzi V (and not Ghouzzi VE). In addition, the words "and p53" appear at the end of the title in the original publication ( https://www.nature.

View Article and Find Full Text PDF

Maintenance of genome stability is a crucial cellular function for normal mammalian development and physiology. However, despite the general relevance of this process, genome stability alteration due to genetic or non-genetic conditions has a particularly profound impact on the developing cerebral cortex. In this review, we will analyze the main pathways involved in maintenance of genome stability, the consequences of their alterations with regard to central nervous system development, as well as the possible molecular and cellular basis of this specificity.

View Article and Find Full Text PDF

Medulloblastoma is the most common malignant brain tumor in children. Current treatment for medulloblastoma consists of surgery followed by irradiation of the whole neuraxis and high-dose multiagent chemotherapy, a partially effective strategy associated with highly invalidating side effects. Therefore, identification and validation of novel target molecules capable of contrasting medulloblastoma growth without disturbing brain development is needed.

View Article and Find Full Text PDF

Abscission is the final step of cytokinesis whereby the intercellular bridge (ICB) linking the two daughter cells is cut. The ICB contains a structure called the midbody, required for the recruitment and organization of the abscission machinery. Final midbody severing is mediated by formation of secondary midbody ingression sites, where the ESCRT III component CHMP4B is recruited to mediate membrane fusion.

View Article and Find Full Text PDF

The Citron protein was originally identified for its capability to specifically bind the active form of RhoA small GTPase, leading to the simplistic hypothesis that it may work as a RhoA downstream effector in actin remodeling. More than two decades later, a much more complex picture has emerged. In particular, it has become clear that in animals, and especially in mammals, the functions of the Citron gene () are intimately linked to many aspects of central nervous system (CNS) development and function, although the gene is broadly expressed.

View Article and Find Full Text PDF

Mutations in citron (CIT), leading to loss or inactivation of the citron kinase protein (CITK), cause primary microcephaly in humans and rodents, associated with cytokinesis failure and apoptosis in neural progenitors. We show that CITK loss induces DNA damage accumulation and chromosomal instability in both mammals and Drosophila. CITK-deficient cells display "spontaneous" DNA damage, increased sensitivity to ionizing radiation, and defective recovery from radiation-induced DNA lesions.

View Article and Find Full Text PDF

Epidemiological evidence from the current outbreak of Zika virus (ZIKV) and recent studies in animal models indicate a strong causal link between ZIKV and microcephaly. ZIKV infection induces cell-cycle arrest and apoptosis in proliferating neural progenitors. However, the mechanisms leading to these phenotypes are still largely obscure.

View Article and Find Full Text PDF

Correct orientation of cell division is considered an important factor for the achievement of normal brain size, as mutations in genes that affect this process are among the leading causes of microcephaly. Abnormal spindle orientation is associated with reduction of the neuronal progenitor symmetric divisions, premature cell cycle exit, and reduced neurogenesis. This mechanism has been involved in microcephaly resulting from mutation of ASPM, the most frequently affected gene in autosomal recessive human primary microcephaly (MCPH), but it is presently unknown how ASPM regulates spindle orientation.

View Article and Find Full Text PDF

In neuronal cells, actin remodeling plays a well known role in neurite extension but is also deeply involved in the organization of intracellular structures, such as the Golgi apparatus. However, it is still not very clear which mechanisms may regulate actin dynamics at the different sites. In this report we show that high levels of the TTC3 protein, encoded by one of the genes of the Down Syndrome Critical Region (DCR), prevent neurite extension and disrupt Golgi compactness in differentiating primary neurons.

View Article and Find Full Text PDF