A novel calibration method based on polar coordinate is proposed. The world coordinates are expressed in the form of polar coordinates, which are converted to world coordinates in the calibration process. In the beginning, the calibration points are obtained in polar coordinates.
View Article and Find Full Text PDFJ Mater Chem B
September 2016
Platinum (Pt)(iv) pro-drugs, which can be reduced to highly cytotoxic Pt(ii) by high concentrations of glutathione (GSH) in cancer cells, offer a new approach to defense against tumors. A carrier with controlled release and targeted functions is essential to determine its final anticancer efficiency. In this study, we report a targeted drug delivery system by fabricating CuS-Pt(iv)-PEG-FA nanoparticles (CuS-Pt(iv) NPs) that integrates Pt drug-induced chemotherapy and CuS nanoparticles-mediated photothermal therapy (PTT) under near infrared (NIR) light irradiation.
View Article and Find Full Text PDFA nanoplatform capable of pH/thermo-coupling sensitive drug release, multimodal imaging, and synergetic antitumor therapy was designed and prepared. The core-shell structured platform consists of a dominant red up-converted luminescence (UCL) core and a copolymer P(NIPAm-MAA) gated mesoporous silica layer with functional cargos loaded inside. Due to the tri-doped Yb/Ce/Ho ions in the core and the inert shell coating, the nanoparticles show intense red UCL under NIR laser excitation.
View Article and Find Full Text PDFUpon near-infrared (NIR) light irradiation, the Nd(3+) doping derived down-conversion luminescence (DCL) in NIR region and thermal effect are extremely fascinating in bio-imaging and photothermal therapy (PTT) fields. However, the concentration quenching induced opposite changing trend of the two properties makes it difficult to get desired DCL and thermal effect together in one single particle. In this study, we firstly designed a unique NaGdF4:0.
View Article and Find Full Text PDFAn efficient three-dimensional shape measurement system is proposed, which is based on the combining projection of single digital speckle pattern and phase-shifting fringe patterns. At the beginning, the initial corresponding point for each pixel is obtained by a novel speckle-phase combination method. The initial information can be calculated by the single speckle pattern in a short time, while the phase information is used to ensure the results.
View Article and Find Full Text PDFProlonged periods of demanding cognitive tasks lead to an exhausted feeling known as mental fatigue. The neural underpinnings of mental fatigue are still under exploration. In the present study, we aimed to identify neurophysiological indicators of mental fatigue by studying the time-frequency distribution of the event-related potentials (ERPs) measured in N=26 adults in nonfatigued versus fatigued states.
View Article and Find Full Text PDFRod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown.
View Article and Find Full Text PDFTo enhance the total emission intensity, particularly the red emission of Yb,Er co-doped nanoparticles for red light activated photodynamic therapy (PDT), we doped Mn ions into the NaGdF:Yb,Er core, and subsequently coated the NaGdF:Yb active shell to fabricate core-shell structured, up-conversion nanoparticles of NaGdF:Yb,Er,Mn@NaGdF:Yb (abbreviated as UCNPs). A novel and facile encapsulation method with gelatin has been proposed to transfer oleic acid (OA) stabilized UCNPs into an aqueous solution and simultaneously decorate zinc phthalocyanine (ZnPc) photosensitizer molecules. In the encapsulation process, ZnPc molecules are wrapped in the interlaced net structure of the peptide chain from gelatin, forming the UCNPs@gel-ZnPc nanocomposite.
View Article and Find Full Text PDFThe MPT transports Pi to synthesize ATP. PsMPT, a chilling-induced gene, was previously reported to promote energy metabolism during bud dormancy release in tree peony. In this study, the regulatory elements of PsMPT promoter involved in chilling response were further analyzed.
View Article and Find Full Text PDFTo correct the incongruence of document types between the numerator and denominator in the traditional impact factor (IF), we make a corresponding adjustment to its formula and present five corrective IFs: IFTotal/Total, IFTotal/AREL, IFAR/AR, IFAREL/AR, and IFAREL/AREL. Based on a survey of researchers in the fields of ophthalmology and mathematics, we obtained the real impact ranking of sample journals in the minds of peer experts. The correlations between various IFs and questionnaire score were analyzed to verify their journal evaluation effects.
View Article and Find Full Text PDFTo integrate photothermal therapy (PTT) with chemotherapy for improving anticancer efficiency, we developed a novel and multifunctional doxorubicin (DOX) conjugated copper sulfide nanoparticle (CuS-DOX NP) drug delivery system using hydrazone bonds to conjugate carboxyl-functionalized copper sulfide nanoparticles (CuS NPs) and DOX. On the other hand, the hydrazone bonds could be used for improving the DOX release rate (88.0%) by cleavage in a mildly acidic environment irradiated by 808 nm laser light, which could greatly promote chemo-therapeutic efficacy.
View Article and Find Full Text PDFIn the last decade, using polymer and mesoporous silica materials as efficient drug delivery carriers has attracted great attention. Although the development and application of them involves some inevitable barriers, such as chronic toxicities, long-term stability, understanding of the biological fate and physiochemical properties, biodistribution, effect in the biological environment, circulation properties and targeting efficacy in vivo. The construction of stimuli responsive drug carriers using biologically safe materials, followed by hydrophilic modification, bioconjugation, targeting functionalization, and detailed safety analysis in small/large animal models may be the best way to overcome these barriers.
View Article and Find Full Text PDFNear-infrared (NIR) light-induced cancer therapy has gained considerable interest, but pure inorganic anti-cancer platforms usually suffer from degradation issues. Here, we designed metal-organic frameworks (MOFs) of Fe3O4/ZIF-8-Au25 (IZA) nanospheres through a green and economic procedure. The encapsulated Fe3O4 nanocrystals not only produce hyperthemal effects upon NIR light irradiation to effectively kill tumor cells, but also present targeting and MRI imaging capability.
View Article and Find Full Text PDFIn this report, MgSiO3:Eu-DOX-DPP-RGD hollow microspheres employed for simultaneous imaging and anti-cancer therapy have been designed by sequentially loading the anti-tumor drugs doxorubicin (DOX), light-activated platinum(iv) pro-drug PPD, and a targeted peptide of NH2-Gly-Arg-Gly-Asp-Ser (RGD) onto MgSiO3:Eu mesoporous hollow spheres, which were synthesized using solid SiO2 spheres as sacrificed template by a facile hydrothermal process based on the Kirkendall effect. The photoluminescence intensity of MgSiO3:Eu has been optimized, which can emit a recognized red signal in vitro and in vivo under modest ultraviolet (UV) irradiation. It was found that the platform has high biocompatibility and could become intracellular through fast and effective endocytosis with the aid of the targeted peptide RGD, and chemotherapeutic drugs DOX and light-activated platinum(iv) pro-drug DPP that can be released from the carrier to induce an obvious inhabitation effect to HeLa cancer cells (survival rate of only 17.
View Article and Find Full Text PDFBackground: An important attribute of the traditional impact factor was the controversial 2-year citation window. So far, several scholars have proposed using different citation time windows for evaluating journals. However, there is no confirmation whether a longer citation time window would be better.
View Article and Find Full Text PDFIn this contribution, a novel multifunctional anti-cancer nanoplatform has been firstly constructed by conjugating a photothermal agent (CuS nanoparticles) and a cancer cell target agent (folic acid, FA) onto the surface of mesoporous silica coated core-shell-shell up-conversion nanoparticles (UCNPs). It was found that the doxorubicin (DOX) loaded system exhibits obvious pH and NIR-responsive release behaviour and the drug can be targetedly delivered to the cancer cells by a receptor mediated endocytosis manner. Furthermore, both photothermal therapy (PTT) and chemotherapy can be triggered simultaneously by a single 808 nm near infrared (NIR) light source, thus leading to a synergistic effect.
View Article and Find Full Text PDFZhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
May 2015
Multifunctional composites have gained significant interest due to their unique properties which show potential in biological imaging and therapeutics. However, the design of an efficient combination of multiple diagnostic and therapeutic modes is still a challenge. In this contribution, Y2O3:Yb,Er@mSiO2 double-shelled hollow spheres (DSHSs) with up-conversion fluorescence have been successfully prepared through a facile integrated sacrifice template method, followed by a calcination process.
View Article and Find Full Text PDFTo integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell structured nano-theranostic by conjugating photosensitive Au25(SR)18 - (SR refers to thiolate) clusters, pH/temperature-responsive polymer P(NIPAm-MAA), and anti-cancer drug (doxorubicin, DOX) onto the surface of mesoporous silica coated core-shell up-conversion nanoparticles (UCNPs). It is found that the photodynamic therapy (PDT) derived from the generated reactive oxygen species and the photothermal therapy (PTT) arising from the photothermal effect can be simultaneously triggered by a single 980 nm near infrared (NIR) light. Furthermore, the thermal effect can also stimulate the pH/temperature sensitive polymer in the cancer sites, thus realizing the targeted and controllable DOX release.
View Article and Find Full Text PDFCancer immunotherapies under development have generally focused on either stimulating T cell immunity or driving antibody-directed effector functions of the innate immune system such as antibody-dependent cell-mediated cytotoxicity (ADCC). We find that a combination of an anti-tumor antigen antibody and an untargeted IL-2 fusion protein with delayed systemic clearance induces significant tumor control in aggressive isogenic tumor models via a concerted innate and adaptive response involving neutrophils, NK cells, macrophages, and CD8(+) T cells. This combination therapy induces an intratumoral "cytokine storm" and extensive lymphocyte infiltration.
View Article and Find Full Text PDFA hierarchical hollow hybrid composite, namely, MnO2 nanosheets grown on nitrogen-doped hollow carbon shells (NHCSs@MnO2 ), was synthesized by a facile in situ growth process followed by calcination. The composite has a high surface area (251 m(2) g(-1) ) and mesopores (4.5 nm in diameter), which can efficiently facilitate transport during electrochemical cycling.
View Article and Find Full Text PDFTo integrate photodynamic therapy (PDT) with photothermal therapy (PTT) and chemotherapy for enhanced antitumor efficiency, we developed a mild and rational route to synthesize novel multifunctional GdOF:Ln@SiO2 (Ln = 10%Yb/1%Er/4%Mn) mesoporous capsules using strong up-conversion luminescent (UCL) GdOF:Ln as cores and mesoporous silica layer as shells, followed by modification with varied functional groups onto the framework. It was found that due to the codoped Yb/Er/Mn in GdOF, the markedly enhanced red emission can efficiently transfer energy to the conjugated PDT agent (ZnPc) which produces high singlet oxygen, and the incorporated carbon dots outside the shell can generate obvious thermal effect under 980 nm laser irradiation and also prevent the premature leaking of ZnPc. Simultaneously, the as-produced thermal effect can obviously enhance the doxorubicin (DOX) release, which greatly improves the chemotherapy, resulting in a synergistic therapeutic effect.
View Article and Find Full Text PDFA facile solution-based thermal decomposition strategy, using very cheap polyisobutylene succimide (PIBSI) and paraffin oil as a surfactant and solvent, respectively, has been developed for the controllable synthesis of magnetic MnFe2O4 and CoFe2O4 nanocrystals (NCs) with high dispersibility, uniform shape, and high yield. By fine-tuning the reaction temperature and growth time, the morphology and size of MnFe2O4 and CoFe2O4 NCs can be simply regulated. It is found that the surfactant PIBSI plays a key role in the final shape of the products due to its long chain with non-polar groups, which can markedly hinder the aggregation of the NCs and thus greatly improve the stability and dispersibility of the products.
View Article and Find Full Text PDFIn this report, uniform LaF(3):Ln mesoporous spheres have been synthesized by a facile and mild in situ ion-exchange method using yolk-like La(OH)3:Ln mesoporous spheres as templates, which were prepared through a self-produced bubble-template route. It was found that the structures of the final LaF(3):Ln can simply be tuned by adding a polyetherimide (PEI) reagent. LaF(3):Ln hollow mesoporous spheres (HMSs) and LaF(3):Ln flower-like mesoporous spheres (FMSs) were obtained when assisted by PEI and in the absence of PEI.
View Article and Find Full Text PDF