The prevalence of food allergies has increased in recent decades in industrialized developed countries. Defects are influenced by environmental factors in early life, including early colonizers of the human gut microbiota. Therapeutic solutions are limited, and the lack of efficient treatments has led to the search for new treatments, including biotherapies.
View Article and Find Full Text PDFMany consumers nowadays demand plant-based milk analogs for reasons related to lifestyle, health, diet and sustainability. This has led to the increasing development of new products, fermented or not. The objective of the present study was to develop a plant-based fermented product (based on soy milk analog or on hemp milk analog), as well as mixes, using lactic acid bacteria (LAB) and propionic acid bacteria (PAB) strains, as well as consortia thereof.
View Article and Find Full Text PDFThe article presents a proteomic dataset generated by a comparative analysis, using gel-free nanoLC-MS/MS, of the cellular proteome of subsp. , a yogurt starter, when cultivated in soy milk versus in cow milk. The CIRM-BIA1592 strain was cultivated in the aqueous phase of soy milk, or of cow milk.
View Article and Find Full Text PDFThe gut microbiota plays a crucial role in the regulation of mucosal immunity and of the function of the intestinal barrier. Dysbiosis is accordingly associated with rupture of mucosal immune homeostasis, leading to inflammatory intestinal diseases. In this context, probiotic bacteria, including a new generation of intestinal probiotics, can maintain intestinal homeostasis and promote health.
View Article and Find Full Text PDFReducing salt intake can mitigate the prevalence of metabolic disorders. In fermented foods such as cheeses, however, salt can impact the activity of desirable and undesirable microorganisms and thus affect their properties. This study aimed to investigate the effect of salt level on Swiss-type cheese ripening.
View Article and Find Full Text PDFLactobacillus delbrueckii subsp. bulgaricus is a beneficial lactic acid bacterium and constitutes one of the most used, and thus consumed, dairy starters, worldwide. This homofermentative bacterium was the first lactobacillus described and is involved in the fermentation of yogurt and of diverse other fermented products, including cheeses.
View Article and Find Full Text PDFFood transition requires incorporating more plant-based ingredients in our diet, thus leading to the development of new plant-based products, such as yogurt alternatives (YAs). This study aimed at evaluating the impact of lactic acid bacteria (LAB) cocultures and formulation on the physico-chemical and sensory properties of YAs. YAs were made by emulsifying anhydrous milk fat (AMF) or coconut oil in milk and lupin protein suspensions.
View Article and Find Full Text PDFLactic acid bacteria (LAB) are responsible for the sanitary, organoleptic, and health properties of most fermented products. Positive interactions between pairs of LAB strains, based on nitrogen dependencies, were previously demonstrated. In a chemically defined medium, using milk and lupin proteins as sole nitrogen source, two proteolytic strains were able to sustain the growth of non-proteolytic strains, but one did not.
View Article and Find Full Text PDFNutritional dependencies, especially those regarding nitrogen sources, govern numerous microbial positive interactions. As for lactic acid bacteria (LAB), responsible for the sanitary, organoleptic, and health properties of most fermented products, such positive interactions have previously been studied between yogurt bacteria. However, they have never been exploited to create artificial cocultures of LAB that would not necessarily coexist naturally, i.
View Article and Find Full Text PDFis a beneficial bacterium that modulates the gut microbiota, motility and inflammation. It is traditionally consumed within various fermented dairy products. Changes to consumer habits in the context of food transition are, however, driving the demand for non-dairy fermented foods, resulting in a considerable development of plant-based fermented products that require greater scientific knowledge.
View Article and Find Full Text PDFDesigning bacterial co-cultures adapted to ferment mixes of vegetal and animal resources for food diversification and sustainability is becoming a challenge. Among bacteria used in food fermentation, lactic acid bacteria (LAB) are good candidates, as they are used as starter or adjunct in numerous fermented foods, where they allow preservation, enhanced digestibility, and improved flavor. We developed here a strategy to design LAB co-cultures able to ferment a new food made of bovine milk and lupin flour, consisting in: (i) preselection of LAB species for targeted carbohydrate degradation; (ii) screening of 97 strains of the selected species for their ability to ferment carbohydrates and hydrolyze proteins from milk and lupin and clustering strains that displayed similar phenotypes; and (iii) assembling strains randomly sampled from clusters that showed complementary phenotypes.
View Article and Find Full Text PDFMicroorganisms grow in concert, both in natural communities and in artificial or synthetic co-cultures. Positive interactions between associated microbes are paramount to achieve improved substrate conversion and process performance in biotransformation and fermented food production. The mechanisms underlying such positive interactions have been the focus of numerous studies in recent decades and are now starting to be well characterized.
View Article and Find Full Text PDFCIRM-BIA 129 ( wild type, WT) is a probiotic bacterium, which exerts immunomodulatory effects. This strain possesses extractable surface proteins, including SlpB, which are involved in anti-inflammatory effect and in adhesion to epithelial cells. We decided to investigate the impact of gene mutation on immunomodulation and .
View Article and Find Full Text PDFis a beneficial bacterium, used both as a probiotic and as a cheese starter. Large-scale production of is required to meet growing consumers' demand. Production, drying and storage must be optimized, in order to guarantee high viability within powders.
View Article and Find Full Text PDFFlow cytometry has been used as a routine method to count somatic cells in milk, and to ascertain udder health and milk quality. However, few studies investigate the viability of somatic cells and even fewer at a subpopulation level to follow up how the cells can resist to various stresses that can be encountered during technological processes. To address this issue, a flow cytometry approach was used to simultaneously identify cell types of bovine milk using cell-specific antibodies and to measure the cell viability among the identified subpopulations by using a live/dead cell viability kit.
View Article and Find Full Text PDFBacteria, either indigenous or added, are immobilized in solid foods where they grow as colonies. Since the 80's, relatively few research groups have explored the implications of bacteria growing as colonies and mostly focused on pathogens in large colonies on agar/gelatine media. It is only recently that high resolution imaging techniques and biophysical characterization techniques increased the understanding of the growth of bacterial colonies, for different sizes of colonies, at the microscopic level and even down to the molecular level.
View Article and Find Full Text PDFStreptococcus thermophilus is the second most used bacterium in dairy industry. It is daily consumed by millions of people through the worldwide consumption of yogurts, cheeses and fermented milks. S.
View Article and Find Full Text PDFIn cheese, lactic acid bacteria are immobilized at the coagulation step and grow as colonies. The spatial distribution of bacterial colonies is characterized by the size and number of colonies for a given bacterial population within cheese. Our objective was to demonstrate that different spatial distributions, which lead to differences in the exchange surface between the colonies and the cheese matrix, can influence the ripening process.
View Article and Find Full Text PDFDairy propionibacteria are actinomycetales found in various fermented food products. The main species, Propionibacterium freudenreichii, is generally recognized as safe and used both as probiotic and as cheese starter. Its probiotic efficacy tightly depends on its tolerance towards digestive stresses, which can be largely modulated by the ingested delivery vehicle.
View Article and Find Full Text PDFSomatic cells are an important component naturally present in milk, and somatic cell count is used as an indicator of udder health and milk quality. The role of somatic cells in dairy processes and products is ill-defined in most studies because the role of these cells combines also the concomitance of physicochemical modifications of milk, bacterial count, and the udder inflammation in the presence of high somatic cell count. The aim of this review is to focus on the role of somatic cells themselves and of endogenous enzymes from somatic cells in milk, in dairy transformation processes, and in characteristics of final products overcoming biases due to other factors.
View Article and Find Full Text PDFBackground: From fundamental studies to industrial processes, synthesis of heterologous protein by micro-organisms is widely employed. The secretion of soluble heterologous proteins in the extracellular medium facilitates their recovery, while their attachment to the cell surface permits the use of the recombinant host cells as protein or peptide supports. One of the key points to carry out heterologous expression is to choose the appropriate host.
View Article and Find Full Text PDFLactobacillus helveticus exhibits a great biodiversity in terms of protease gene content, with 1 to 4 cell envelope proteinases. Among them, proteinases PrtH and PrtH2 were shown to have different cleavage specificity on pure α(s1)-casein. The aim of this work was to investigate the proteolytic activity of 2L.
View Article and Find Full Text PDFDue to increasingly available bacterial genomes in databases, proteomic tools have recently been used to screen proteins expressed by micro-organisms in food in order to better understand their metabolism in situ. While the main objective is the systematic identification of proteins, the next step will be to bridge the gap between identification and quantification of these proteins. For that purpose, a new mass spectrometry-based approach was applied, using isobaric tagging reagent for quantitative proteomic analysis (iTRAQ), which are amine specific and yield labelled peptides identical in mass.
View Article and Find Full Text PDFLactobacillus helveticus is a lactic acid bacterium very used in fermented milks and cheese. The rapid growth of L. helveticus in milk is supported by an efficient cell envelope proteinase (CEP) activity, due to subtilisin-like serine proteases.
View Article and Find Full Text PDF