Purpose: Recent evidence has shown that retinal inflammation is a key player in diabetic retinopathy (DR) pathogenesis. To further understand and validate the metabolic biomarkers of DR, we investigated the effect of intravitreal proinflammatory cytokines on the retinal structure, function, and metabolism in an in vivo hyperglycemic mouse model.
Methods: C57Bl/6 mice were rendered hyperglycemic within one week of administration of a single high-dose intraperitoneal injection of streptozotocin, while control mice received vehicle injection.
Diabetic retinopathy (DR) is the leading cause of vision impairment in working age adults. In addition to hyperglycemia, retinal inflammation is an important driving factor for DR development. Although DR is clinically described as diabetes-induced damage to the retinal blood vessels, several studies have reported that metabolic dysregulation occurs in the retina prior to the development of microvascular damage.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is the most prevalent form of dementia worldwide. This neurodegenerative syndrome affects cognition, memory, behavior, and the visual system, particularly the retina.
Objective: This work aims to determine whether the 5xFAD mouse, a transgenic model of AD, displays changes in the function of retinal ganglion cells (RGCs) and if those alterations are correlated with changes in the expression of glutamate and gamma-aminobutyric acid (GABA) neurotransmitters.
Purpose: Diabetic retinopathy (DR) is one of the most frequent complications of diabetes affecting the retina and eventually causing vision impairment. Emerging evidence suggests that inflammation plays a vital role in DR progression. In this study, we evaluated the early biochemical and neurochemical changes in mouse retinal explants to understand the contribution of proinflammatory cytokines to disease progression.
View Article and Find Full Text PDFEpidermal Growth Factor Receptor variant III (EGFRvIII) is a tumor specific antigen detected in various tumors including gliomas, breast cancer, lung cancer, head and neck squamous cell carcinoma (HNSCC). Screening of EGFRvIII targeting drug molecules can be accelerated by developing drug screening platforms using recombinantly expressed protein. Choice of expression system is one of the major factors deciding the success of recombinant expression of a protein.
View Article and Find Full Text PDF