Global climate change is identified as a major threat to survival of natural ecosystems. Climate change is a dynamic, multifaceted system of alterations in environmental conditions that affect abiotic and biotic components of the world. It results in alteration in environmental conditions such as heat waves, intensity of rainfall, CO concentration and temperature that lead to rise in new pests, weeds and pathogens.
View Article and Find Full Text PDFGlobally, environmental contamination by potentially noxious metalloids like arsenic is becoming a critical concern to the living organisms. Arsenic is a non-essential metalloid for plants and can be acclimatised in plants to toxic levels. Arsenic acquisition by plants poses serious health risks in human due to its entry in the food chain.
View Article and Find Full Text PDFBeing sessile organisms, plants are persistently confronted by a diverse array of biotic agents, including viruses, bacteria, fungi, herbivores, and nematodes. Understanding the mechanism of host-pathogen interactions is essential for improving plant resistance against these biotic factors. In this review, we have discussed various means and mechanisms by which pathogens influence the host plant defense.
View Article and Find Full Text PDFCopper (Cu) is an essential element for humans and plants when present in lesser amount, while in excessive amounts it exerts detrimental effects. There subsists a narrow difference amid the indispensable, positive and detrimental concentration of Cu in living system, which substantially alters with Cu speciation, and form of living organisms. Consequently, it is vital to monitor its bioavailability, speciation, exposure levels and routes in the living organisms.
View Article and Find Full Text PDFSalicylic acid (SA) is a very simple phenolic compound (a CHO compound composed of an aromatic ring, one carboxylic and a hydroxyl group) and this simplicity contrasts with its high versatility and the involvement of SA in several plant processes either in optimal conditions or in plants facing environmental cues, including heavy metal (HM) stress. Nowadays, a huge body of evidence has unveiled that SA plays a pivotal role as plant growth regulator and influences intra- and inter-plant communication attributable to its methyl ester form, methyl salicylate, which is highly volatile. Under stress, including HM stress, SA interacts with other plant hormones (e.
View Article and Find Full Text PDFZinc (Zn) is a vital micronutrient for plants, but its abundance can be calamitous. In this study, a screenhouse experiment was conducted over a 6-week period to assess the effect of soil enrichment with Zn regimes (100, 250 and 500 mg kg) on growth, Zn accumulation, photosynthetic pigment concentration, oxidative stress markers and activities of antioxidant enzymes in Coronopus didymus. Results revealed that Zn concentration in C.
View Article and Find Full Text PDFWater is polluted by increasing activities of population and the necessity to provide them with goods and services that use water as a vital resource. The contamination of water due to heavy metals (HMs) is a big concern for humankind; however, global studies related to this topic are scarce. Thus, the current review assesses the content of HMs in surface water bodies throughout the world from 1994 to 2019.
View Article and Find Full Text PDFPlants face a variety of abiotic stresses, which generate reactive oxygen species (ROS), and ultimately obstruct normal growth and development of plants. To prevent cellular damage caused by oxidative stress, plants accumulate certain compatible solutes known as osmolytes to safeguard the cellular machinery. The most common osmolytes that play crucial role in osmoregulation are proline, glycine-betaine, polyamines, and sugars.
View Article and Find Full Text PDFSoil is substantive component of biosphere, which is exposed to plethora of pollutants including heavy metals. These are added by natural as well as anthropogenic activities. Upsurge in heavy metal content affects all organisms by biomagnification.
View Article and Find Full Text PDFIn a screenhouse, the applicability of biodegradable chelant ethylenediamine disuccinic acid (EDDS) to enhance Ni-phytoextraction by Coronopus didymus was tested for the first time. This study assayed the hypothesis based upon the role of EDDS on physiological and biochemical alterations and ameliorating phytoextraction capacity of C. didymus under nickel (Ni) stress.
View Article and Find Full Text PDFCoronopus didymus was examined in terms of its ability to remediate Pb-contaminated soils. Pot experiments were conducted for 4 and 6 weeks to compare the growth, biomass, photosynthetic efficiency, lead (Pb) uptake, and accumulation by C. didymus plants.
View Article and Find Full Text PDFIn a screenhouse experiment, we investigated the role of two environment friendly chelants, Ammonium molybdate and EDDS for Pb mobilisation and its extraction by Coronopus didymus under completely randomized controlled conditions. Seedlings of C. didymus were grown in pots having Pb-contaminated soil (1200 and 2200 mg kg) for 6 weeks.
View Article and Find Full Text PDFThe potential of a wild, unpalatable plant Coronopus didymus was investigated for the first time in terms of its capability to tolerate and accumulate cadmium (Cd) for phytoremediation purposes. A screenhouse experiment for 6 weeks was conducted to evaluate the effect of Cd from 100 to 400mgkg on growth, biomass, photosynthetic apparatus, Cd uptake and accumulation in C. didymus plants.
View Article and Find Full Text PDFA screenhouse experiment was conducted to assay the effect of Lead (Pb) on oxidative status, antioxidative response and metal accumulation in Coronopus didymus after 6 weeks. Results revealed a good Pb tolerance and accumulation potential of C. didymus towards the increasing Pb concentrations (500, 900, 1800, 2900 mg kg(-1)) in soil.
View Article and Find Full Text PDF