Publications by authors named "Gaevert J"

Unlabelled: Influenza remains a worldwide public health threat. Although seasonal influenza vaccines are currently the best means of preventing severe disease, the standard-of-care vaccines require frequent updating due to antigenic drift and can have low efficacy, particularly in vulnerable populations. Here, we demonstrate that a single administration of a recombinant adenovirus-associated virus (rAAV) vector expressing a computationally optimized broadly reactive antigen (COBRA)-derived influenza H1 hemagglutinin (HA) induces strongly neutralizing and broadly protective antibodies in naïve mice and ferrets with pre-existing influenza immunity.

View Article and Find Full Text PDF
Article Synopsis
  • Severe influenza A virus can cause serious issues like lung damage and breathing problems, and there are currently no good medicines to treat it.
  • A new drug called UH15-38 has been created to stop a harmful process (called necroptosis) that makes the lung problems worse during severe infections.
  • Tests showed that UH15-38 helped reduce lung inflammation and saved lives in infected patients, even when given later in the illness, making it a promising option for treating severe influenza and related conditions.
View Article and Find Full Text PDF

Diversity of the naive T cell repertoire is maintained by competition for stimuli provided by self-peptides bound to major histocompatibility complexes (self-pMHCs). We extend an existing bi-variate competition model to a multi-variate model of the dynamics of multiple T cell clonotypes which share stimuli. In order to understand the late-time behaviour of the system, we analyse: (i) the dynamics until the extinction of the first clonotype, (ii) the time to the first extinction event, (iii) the probability of extinction of each clonotype, and (iv) the size of the surviving clonotypes when the first extinction event takes place.

View Article and Find Full Text PDF

T-cell receptors (TCRs) encode clinically valuable information that reflects prior antigen exposure and potential future response. However, despite advances in deep repertoire sequencing, enormous TCR diversity complicates the use of TCR clonotypes as clinical biomarkers. We propose a new framework that leverages experimentally inferred antigen-associated TCRs to form meta-clonotypes - groups of biochemically similar TCRs - that can be used to robustly quantify functionally similar TCRs in bulk repertoires across individuals.

View Article and Find Full Text PDF

If viral strains are sufficiently similar in their immunodominant epitopes, then populations of cross-reactive T cells may be boosted by exposure to one strain and provide protection against infection by another at a later date. This type of pre-existing immunity may be important in the adaptive immune response to influenza and to coronaviruses. Patterns of recognition of epitopes by T cell clonotypes (a set of cells sharing the same T cell receptor) are represented as edges on a bipartite network.

View Article and Find Full Text PDF

As the mechanistic basis of adaptive cellular antigen recognition, T cell receptors (TCRs) encode clinically valuable information that reflects prior antigen exposure and potential future response. However, despite advances in deep repertoire sequencing, enormous TCR diversity complicates the use of TCR clonotypes as clinical biomarkers. We propose a new framework that leverages antigen-enriched repertoires to form meta-clonotypes - groups of biochemically similar TCRs - that can be used to robustly identify and quantify functionally similar TCRs in bulk repertoires.

View Article and Find Full Text PDF