In this research, we present a study on the atomization threshold (ATh) of sessile droplets, analyzing its relationship with the excitation frequency fexc (55-48 kHz), droplet volume Vdrop (1-100 μl), and droplet viscosity μ (1-6 mPa⋅s). The investigation focused on the atomization thresholds using ultrasonic excitation of distilled water droplets and water- polyethylene glycol (PEG)-8000 mixtures deposited on vibrating surfaces. The obtained results are compared with previously reported theoretical models.
View Article and Find Full Text PDFThe acoustic levitation of a drop is a complex process that needs a high-intensity non-linear acoustic field; the sound pressure level has to be sufficient to raise the drop but not too large to avoid its atomization, limiting the maximum size of a levitated drop. In this paper, we present an experimental study of big drops levitation with a volume up to 166±2μl and with an effective diameter 6.82±0.
View Article and Find Full Text PDFExperimental data on ultrasonic atomization of distilled water in a frequency range from 5 to 50 kHz are presented. A good agreement was found with the predictions of Rajan and Pandit [Ultrasonics 39, 235-255 (2001)] for the atomized primary drop size as a function of frequency. The correlation of atomization drop size for different frequencies is useful when producing nanoparticles, spray drying of suspensions, and covering of surfaces using different liquid products.
View Article and Find Full Text PDFUltrasonic radiation can modify some physical properties in liquid/solid interactions, such as wettability. The dependence of solid surface wettability on its vibrational state was studied. Experiments with an interface formed by distilled water deposited on a titanium alloy and surrounded by air were carried out.
View Article and Find Full Text PDFA study of ultrasonic enhancement in the extraction of bioactive principles from Quillaja Saponaria Molina (Quillay) is presented. The effects influencing the extraction process were studied through a two-level factorial design. The effects considered in the experimental design were: granulometry, extraction time, acoustic Power, raw matter/solvent ratio (concentration) and acoustic impedance.
View Article and Find Full Text PDFThe most characteristic narrow-band transducer structure for high-power ultrasonic applications is the well known piezoelectric sandwich which is reminiscent of the Langevin transducer. Such structure is generally used jointly with other components in the construction of industrial high-power transducers. One of the main objectives in the design and construction of such high-power transducers is to minimize energy losses.
View Article and Find Full Text PDFThis paper deals with a new technology for fine grinding of hard materials, based on a high-compression roller mill with ultrasonic capabilities. The machine was tested by producing fine powders from hard rocks, with and without ultrasonic activation, permitting the beneficial effects of ultrasound to be evaluated. The experimental set-up allows the following operational parameters to be measured: material flow, applied torque, angular velocity of the rollers, stress on the shafts, ultrasonic energy applied and the vibration amplitude and phase behaviour of the transducer roller.
View Article and Find Full Text PDF