Publications by authors named "Gaetan Vignoud"

Spatio-temporal activity patterns have been observed in a variety of brain areas in spontaneous activity, prior to or during action, or in response to stimuli. Biological mechanisms endowing neurons with the ability to distinguish between different sequences remain largely unknown. Learning sequences of spikes raises multiple challenges, such as maintaining in memory spike history and discriminating partially overlapping sequences.

View Article and Find Full Text PDF

Background: Among motor symptoms of Parkinson's disease (PD), including rigidity and resting tremor, bradykinesia is a mandatory feature to define the parkinsonian syndrome. MDS-UPDRS III is the worldwide reference scale to evaluate the parkinsonian motor impairment, especially bradykinesia. However, MDS-UPDRS III is an agent-based score making reproducible measurements and follow-up challenging.

View Article and Find Full Text PDF

We investigate spike-timing dependent plasticity (STPD) in the case of a synapse connecting two neuronal cells. We develop a theoretical analysis of several STDP rules using Markovian theory. In this context there are two different timescales, fast neuronal activity and slower synaptic weight updates.

View Article and Find Full Text PDF

The striatum mediates two learning modalities: goal-directed behavior in dorsomedial (DMS) and habits in dorsolateral (DLS) striata. The synaptic bases of these learnings are still elusive. Indeed, while ample research has described DLS plasticity, little remains known about DMS plasticity and its involvement in procedural learning.

View Article and Find Full Text PDF

The striatum integrates inputs from the cortex and thalamus, which display concomitant or sequential activity. The striatum assists in forming memory, with acquisition of the behavioral repertoire being associated with corticostriatal (CS) plasticity. The literature has mainly focused on that CS plasticity, and little remains known about thalamostriatal (TS) plasticity rules or CS and TS plasticity interactions.

View Article and Find Full Text PDF

Behavioural experience, such as environmental enrichment (EE), induces long-term effects on learning and memory. Learning can be assessed with the Hebbian paradigm, such as spike-timing-dependent plasticity (STDP), which relies on the timing of neuronal activity on either side of the synapse. Although EE is known to control neuronal excitability and consequently spike timing, whether EE shapes STDP remains unknown.

View Article and Find Full Text PDF

Odor perception allows animals to distinguish odors, recognize the same odor across concentrations, and determine concentration changes. How the activity patterns of primary olfactory receptor neurons (ORNs), at the individual and population levels, facilitate distinguishing these functions remains poorly understood. Here, we interrogate the complete ORN population of the Drosophila larva across a broadly sampled panel of odorants at varying concentrations.

View Article and Find Full Text PDF

Hebbian plasticity describes a basic mechanism for synaptic plasticity whereby synaptic weights evolve depending on the relative timing of paired activity of the pre- and postsynaptic neurons. Spike-timing-dependent plasticity (STDP) constitutes a central experimental and theoretical synaptic Hebbian learning rule. Various mechanisms, mostly calcium-based, account for the induction and maintenance of STDP.

View Article and Find Full Text PDF