Hypercholesterolemia plays a causal role in the development of atherosclerosis and is one of the main risk factors for cardiovascular disease (CVD), the leading cause of death worldwide especially in developed countries. Current data show that the role of microbiota extends beyond digestion by being implicated in several metabolic and inflammatory processes linked to several diseases including CVD. Studies have reported associations between bacterial metabolites and hypercholesterolemia.
View Article and Find Full Text PDFBackground: LDL-cholesterol lowering variants that upregulate receptor uptake of LDL, such as in PCSK9 and HMGCR, are associated with diabetes via unclear mechanisms. Activation of the NLRP3 inflammasome/interleukin-1 beta (IL-1β) pathway promotes white adipose tissue (WAT) dysfunction and type 2 diabetes (T2D) and is regulated by LDL receptors (LDLR and CD36). We hypothesized that: (a) normocholesterolemic subjects with lower plasma PCSK9, identifying those with higher WAT surface-expression of LDLR and CD36, have higher activation of WAT NLRP3 inflammasome and T2D risk factors, and; (b) LDL upregulate adipocyte NLRP3 inflammasome and inhibit adipocyte function.
View Article and Find Full Text PDFObjective: Human conditions with upregulated receptor uptake of low-density lipoproteins (LDL) are associated with diabetes risk, the reasons for which remain unexplored. LDL induce metabolic dysfunction in murine adipocytes. Thus, it was hypothesized that white adipose tissue (WAT) surface expression of LDL receptor (LDLR) and/or CD36 is associated with WAT and systemic metabolic dysfunction.
View Article and Find Full Text PDFCLCF1 is a neurotrophic and B cell-stimulating factor belonging to the IL-6 family. Mutations in the gene coding for CLCF1 or its secretion partner CRLF1 lead to the development of severe phenotypes, suggesting important nonredundant roles in development, metabolism, and immunity. Although CLCF1 was shown to promote the proliferation of the myeloid cell line M1, its roles on myeloid activation remain underinvestigated.
View Article and Find Full Text PDFBackground: Pharmacogenomic studies have shown that ADCY9 genotype determines the effects of the CETP (cholesteryl ester transfer protein) inhibitor dalcetrapib on cardiovascular events and atherosclerosis imaging. The underlying mechanisms responsible for the interactions between ADCY9 and CETP activity have not yet been determined.
Methods: Adcy9-inactivated ( Adcy9) and wild-type (WT) mice, that were or not transgenic for the CETP gene (CETPtg Adcy9 and CETPtg Adcy9), were submitted to an atherogenic protocol (injection of an AAV8 [adeno-associated virus serotype 8] expressing a PCSK9 [proprotein convertase subtilisin/kexin type 9] gain-of-function variant and 0.
The cytokines CLCF1 and CNTF are ligands for the CNTF receptor and the apolipoprotein E (ApoE) receptor sortilin. Both share structural similarities with the N-terminal domain of ApoE, known to bind CNTF. We therefore evaluated whether ApoE or ApoE-containing lipoproteins interact with CLCF1 and regulate its activity.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
January 2018
Hepatic low-density lipoprotein receptor (LDLR) is the primary conduit for the clearance of plasma LDL-cholesterol and increasing its expression represents a central goal for treating cardiovascular disease. However, LDLR mRNA is unstable and undergoes rapid turnover mainly due to the three AU-rich elements (ARE) in its proximal 3'-untranslated region (3'-UTR). Herein, our data revealed that 5-azacytidine (5-AzaC), an antimetabolite used in the treatment of myelodysplastic syndrome, stabilizes the LDLR mRNA through a previously unrecognized signaling pathway resulting in a strong increase of its protein level in human hepatocytes in culture.
View Article and Find Full Text PDFVoltage-gated L-type Ca1.2 channels in cardiomyocytes exist as heteromeric complexes with the pore-forming Caα1, Caβ, and Caα2δ1 subunits. The full complement of subunits is required to reconstitute the native-like properties of L-type Ca currents, but the molecular determinants responsible for the formation of the heteromeric complex are still being studied.
View Article and Find Full Text PDFThe purpose of this study was to investigate the effects of three weeks of rosuvastatin (Ros) treatment alone and in combination with voluntary training (Tr) on expression of genes involved in cholesterol metabolism (LDLR, PCSK9, LRP-1, SREBP-2, IDOL, ACAT-2 and HMGCR) in the liver of eight week-old ovariectomized (Ovx) rats. Sprague Dawley rats were Ovx or sham-operated (Sham) and kept sedentary for 8 weeks under a standard diet. Thereafter, rats were transferred for three weeks in running wheel cages for Tr or kept sedentary (Sed) with or without Ros treatment (5mg/kg/day).
View Article and Find Full Text PDFPCSK9 is a secreted ligand and negative post-translational regulator of low-density lipoprotein receptor (LDLR) in hepatocytes. Gain-of-function (GOF) or loss-of-function (LOF) mutations in PCSK9 are directly correlated with high or low plasma LDL-cholesterol levels, respectively. Therefore, PCSK9 is a prevailing lipid-lowering target to prevent coronary heart diseases and stroke.
View Article and Find Full Text PDFAtherosclerosis is driven by the accumulation of immune cells and cholesterol in the arterial wall. Although recent studies have shown that lymphatic vessels play an important role in macrophage reverse cholesterol transport, the specific underlying mechanisms of this physiological feature remain unknown. In the current report, we sought to better characterize the lymphatic dysfunction that is associated with atherosclerosis by studying the physiological and temporal origins of this impairment.
View Article and Find Full Text PDFClearance of circulating low-density lipoprotein cholesterol (LDLc) by hepatic LDL receptors (LDLR) is central for vascular health. Secreted by hepatocytes, PCSK9 induces the degradation of LDLR, resulting in higher plasma LDLc levels. Still, it remains unknown why LDLR and PCSK9 co-exist within the secretory pathway of hepatocytes without leading to complete degradation of LDLR.
View Article and Find Full Text PDFObjective: Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor thereby elevating plasma low-density lipoprotein cholesterol levels and the risk of coronary heart disease. Thus, the use of PCSK9 inhibitors holds great promise to prevent heart disease. Previous work found that PCSK9 is involved in triglyceride metabolism, independently of its action on low-density lipoprotein receptor, and that other yet unidentified receptors could mediate this effect.
View Article and Find Full Text PDFAmyloid precursor-like protein 2 (APLP2) and sortilin were reported to individually bind the proprotein convertase subtilisin/kexin type 9 (PCSK9) and regulate its activity on the low-density lipoprotein receptor (LDLR). The data presented herein demonstrate that mRNA knockdowns of APLP2, sortilin, or both in the human hepatocyte cell lines HepG2 and Huh7 do not affect the ability of extracellular PCSK9 to enhance the degradation of the LDLR. Furthermore, mice deficient in APLP2 or sortilin do not exhibit significant changes in liver LDLR or plasma total cholesterol levels.
View Article and Find Full Text PDFDNA methylation and histone acetylation inhibitors are widely used to study the role of epigenetic marks in the regulation of gene expression. In addition, several of these molecules are being tested in clinical trials or already in use in the clinic. Antimetabolites, such as the DNA-hypomethylating agent 5-azacytidine (5-AzaC), have been shown to lower malignant progression to acute myeloid leukemia and to prolong survival in patients with myelodysplastic syndromes.
View Article and Find Full Text PDFAims: To demonstrate that p53 modulates endothelial function and the stress response to a high-fat western diet (WD).
Methods And Results: Three-month old p53+/+ wild type (WT) and p53+/- male mice were fed a regular or WD for 3 months. Plasma levels of total cholesterol (TC) and LDL-cholesterol were significantly elevated (p<0.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) directly binds to the epidermal growth factor-like repeat A domain of low-density lipoprotein receptor and induces its degradation, thereby controlling circulating low-density lipoprotein cholesterol (LDL-C) concentration. Heterozygous loss-of-function mutations in PCSK9 can decrease the incidence of coronary heart disease by up to 88%, owing to lifelong reduction of LDL-C. Moreover, two subjects with PCSK9 loss-of-function mutations on both alleles, resulting in a total absence of functional PCSK9, were found to have extremely low circulating LDL-C levels without other apparent abnormalities.
View Article and Find Full Text PDFNiemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by over-accumulation of low-density lipoprotein-derived cholesterol and glycosphingolipids in late endosomes/lysosomes (LE/L) throughout the body. Human mutations in either NPC1 or NPC2 genes have been directly associated with impaired cholesterol efflux from LE/L. Independent from its role in cholesterol homeostasis and its NPC2 partner, NPC1 was unexpectedly identified as a critical player controlling intracellular entry of filoviruses such as Ebola.
View Article and Find Full Text PDFProprotein convertase subtilisin/kexin-9 (PCSK9) enhances the degradation of hepatic low-density lipoprotein receptor (LDLR). Deletion of PCSK9, and loss-of-function mutants in humans result in lower levels of circulating LDL-cholesterol and a strong protection against coronary heart disease. Accordingly, the quest for PCSK9 inhibitors has major clinical implications.
View Article and Find Full Text PDFPCSK9, a target for the treatment of dyslipidemia, enhances the degradation of the LDL receptor (LDLR) in endosomes/lysosomes, up-regulating LDL-cholesterol levels. Whereas the targeting and degradation of the PCSK9-LDLR complex are under scrutiny, the roles of the N- and C-terminal domains of PCSK9 are unknown. Although autocatalytic zymogen processing of PCSK9 occurs at Gln(152)↓, here we show that human PCSK9 can be further cleaved in its N-terminal prosegment at Arg(46)↓ by an endogenous enzyme of insect High Five cells and by a cellular mammalian protease, yielding an ∼4-fold enhanced activity.
View Article and Find Full Text PDFElevated levels of plasma low density lipoprotein (LDL)-cholesterol, leading to familial hypercholesterolemia, are enhanced by mutations in at least three major genes, the LDL receptor (LDLR), its ligand apolipoprotein B, and the proprotein convertase PCSK9. Single point mutations in PCSK9 are associated with either hyper- or hypocholesterolemia. Accordingly, PCSK9 is an attractive target for treatment of dyslipidemia.
View Article and Find Full Text PDFUnlabelled: Human PCSK9 is known to enhance the degradation of membrane-bound receptors such as the hepatocyte low-density lipoprotein receptor (LDLR), ApoER2, and very low-density lipoprotein receptor. Because the LDLR is suspected to be involved in hepatitis C virus (HCV) entry, we also tested whether PCSK9 can affect the levels of CD81, a major HCV receptor. Interestingly, stable expression of PCSK9 or a more active membrane-bound form of the protein (PCSK9-ACE2) resulted in a marked reduction in CD81 and LDLR expression.
View Article and Find Full Text PDFThe proprotein convertase subtilisin/kexin-type 9 (PCSK9), which promotes degradation of the hepatic low density lipoprotein receptor (LDLR), is now recognized as a major player in plasma cholesterol metabolism. Several gain-of-function mutations in PCSK9 cause hypercholesterolemia and premature atherosclerosis, and thus, inhibition of PCSK9-induced degradation of the LDLR may be used to treat this deadly disease. Herein, we discovered an endogenous PCSK9 binding partner by Far Western blotting, co-immunoprecipitation, and pull-down assays.
View Article and Find Full Text PDF