Nephrogenic systemic fibrosis (NSF) is a scleroderma-like disease associated with prior administration of certain gadolinium chelates (GCs). NSF occurs in patients with severe renal failure. The purpose of this study was to set up a rat model of GC-associated NSF to elucidate the mechanism of this devastating disease.
View Article and Find Full Text PDFPurpose: To detect the ultrastructural site of gadolinium retention in skin by using an animal model of nephrogenic systemic fibrosis and compare a linear, low-stability gadolinium chelate (formulated gadodiamide) with a macrocylic, high-stability gadolinium chelate (gadoterate meglumine).
Materials And Methods: Experimental procedures were performed according to rules and regulations laid down by the UK Home Office (Animal Procedures Act of 1986). Male Wistar rats were subjected to 5/6 subtotal nephrectomy (creatinine clearance, 25% normal).
Objectives: Nephrogenic systemic fibrosis occurs in patients with poor renal function who receive gadolinium-based contrast agents (Gd-CAs). Several reports suggest that this is more likely to occur with the less stable forms of Gd chelates, suggesting a release of cytotoxic free Gd ions from these. There is evidence that Gd can stimulate human fibroblast proliferation but the evidence is less clear concerning the production of collagen by these cells.
View Article and Find Full Text PDFPurpose: Investigation of dissociated versus chelated gadolinium (Gd) in plasma, skin, and bone of rats with impaired renal function after administration of ionic macrocyclic (gadoterate or Dotarem) or nonionic linear (gadodiamide or Omniscan) Gd chelates.
Materials And Methods: Subtotally nephrectomized Wistar rats were subjected to receive daily injections of 2.5 mmol/kg of Omniscan, gadodiamide without excess ligand caldiamide, Dotarem, or saline (n = 7-10 rats/group) for 5 consecutive days.
Objectives: The development of nephrogenic systemic fibrosis (NSF) following MRI contrast examination has been associated with gadolinium (Gd) toxicity. Animal models should show the key features of NSF in man where, the only immutable epidemiological feature is renal impairment. A rat model of chronic renal insufficiency has been employed to establish whether tissue gadolinium retention and increased skin cellularity following a gadolinium based contrast agent (GBCA) can be correlated with a reduction in renal function.
View Article and Find Full Text PDF