Publications by authors named "Gaelle Hogrel"

Unlabelled: The mechanisms underpinning the replication of genomic DNA have recently been challenged in . Indeed, the lack of origin of replication has no deleterious effect on growth, suggesting that replication initiation relies on homologous recombination. Recombination-dependent replication (RDR) appears to be based on the recombinase RadA, which is of absolute requirement when no initiation origins are detected.

View Article and Find Full Text PDF

Cyclic nucleotide signalling is a key component of antiviral defence in all domains of life. Viral detection activates a nucleotide cyclase to generate a second messenger, resulting in activation of effector proteins. This is exemplified by the metazoan cGAS-STING innate immunity pathway, which originated in bacteria.

View Article and Find Full Text PDF
Article Synopsis
  • The proteasome system is responsible for degrading damaged or unneeded proteins, including newly formed peptides, but its interaction with translation machinery in Archaea is not well understood.
  • Researchers studied a small protein called Q9UZY3, now named Pbp11, which was identified using the proteasome-activating nucleotidase (PAN) as bait in experiments.
  • Pbp11 has a unique structure and binds to tRNA, indicating it plays a significant role in connecting the proteasome and translation processes, as it interacts with the proteasome machinery and includes various related proteins in its interaction network.
View Article and Find Full Text PDF

Among the three domains of life, the process of homologous recombination (HR) plays a central role in the repair of double-strand DNA breaks and the restart of stalled replication forks. Curiously, main protein actors involved in the HR process appear to be essential for hyperthermophilic Archaea raising interesting questions about the role of HR in replication and repair strategies of those Archaea living in extreme conditions. One key actor of this process is the recombinase RadA, which allows the homologous strand search and provides a DNA substrate required for following DNA synthesis and restoring genetic information.

View Article and Find Full Text PDF

Several archaeal species prevalent in extreme environments are particularly exposed to factors likely to cause DNA damages. These include hyperthermophilic archaea (HA), living at temperatures >70°C, which arguably have efficient strategies and robust genome guardians to repair DNA damage threatening their genome integrity. In contrast to Eukarya and other archaea, homologous recombination appears to be a vital pathway in HA, and the Mre11-Rad50 complex exerts a broad influence on the initiation of this DNA damage response process.

View Article and Find Full Text PDF

In Archaea, the proteins involved in the genetic information processing pathways, including DNA replication, transcription, and translation, share strong similarities with those of eukaryotes. Characterizations of components of the eukaryotic-type replication machinery complex provided many interesting insights into DNA replication in both domains. In contrast, DNA repair processes of hyperthermophilic archaea are less well understood and very little is known about the intertwining between DNA synthesis, repair and recombination pathways.

View Article and Find Full Text PDF