Publications by authors named "Gael Thebaud"

Begomoviruses, transmitted by the whitefly , pose significant threats to global agriculture due to their severe impact on various crops. Among the satellite molecules associated with begomoviruses, betasatellites play a crucial role in enhancing disease severity and yield losses. The spread and association of these molecules with helper viruses in host plants are thus matters of concern.

View Article and Find Full Text PDF

The rice yellow mottle virus (RYMV) is a model in plant virus molecular epidemiology, with the reconstruction of historical introduction routes at the scale of the African continent. However, information on patterns of viral prevalence and viral diversity over multiple years at a local scale remains scarce, in spite of potential implications for crop protection. Here, we describe a 5-year (2015-9) monitoring of RYMV prevalence in six sites from western Burkina Faso (geographic areas of Bama, Banzon, and Karfiguela).

View Article and Find Full Text PDF

To avoid the activation of plant defenses and ensure sustained feeding, aphids are assumed to use their mouthparts to deliver effectors into plant cells. A recent study has shown that effectors detected near feeding sites are differentially distributed in plant tissues. However, the precise process of effector delivery into specific plant compartments is unknown.

View Article and Find Full Text PDF

High-throughput sequencing has opened the route for a deep assessment of within-host genetic diversity that can be used, e.g., to characterize microbial communities and to infer transmission links in infectious disease outbreaks.

View Article and Find Full Text PDF

In recent decades, a legion of monopartite begomoviruses transmitted by the whitefly Bemisia tabaci has emerged as serious threats to vegetable crops in Africa. Recent studies in Burkina Faso (West Africa) reported the predominance of pepper yellow vein Mali virus (PepYVMLV) and its frequent association with a previously unknown DNA-B component. To understand the role of this DNA-B component in the emergence of PepYVMLV, we assessed biological traits related to virulence, virus accumulation, location in the tissue and transmission.

View Article and Find Full Text PDF

Barley/cereal yellow dwarf viruses (YDVs) cause yellow dwarf disease (YDD), which is a continuous risk to cereals production worldwide. These viruses cause leaf yellowing and stunting, resulting in yield reductions of up to 80%. YDVs have been a consistent but low-level problem in European cereal cultivation for the last three decades, mostly due to the availability of several effective insecticides (largely pyrethroids and more recently neonicotinoids) against aphid vectors.

View Article and Find Full Text PDF

Inferring the dispersal processes of vector-borne plant pathogens is a great challenge because the plausible epidemiological scenarios often involve complex spread patterns at multiple scales. The spatial genetic structure of 'Candidatus Phytoplasma prunorum', responsible for European stone fruit yellows disease, was investigated by the application of a combination of statistical approaches to genotype data of the pathogen sampled from cultivated and wild compartments in three French Prunus-growing regions. This work revealed that the prevalence of the different genotypes is highly uneven both between regions and compartments.

View Article and Find Full Text PDF

Wheat dwarf virus, transmitted by the leafhopper in a persistent, non-propagative manner, infects numerous species from the family. Data associated with wheat dwarf virus (WDV) suggest that some isolates preferentially infect wheat while other preferentially infect barley. This allowed to define the wheat strain and the barley strain.

View Article and Find Full Text PDF

Epidemiological models are increasingly used to predict epidemics and improve management strategies. However, they rarely consider landscape characteristics although such characteristics can influence the epidemic dynamics and, thus, the effectiveness of disease management strategies. Here, we present a generic in silico approach which assesses the influence of landscape aggregation on the costs associated with an epidemic and on improved management strategies.

View Article and Find Full Text PDF

Improvement of management strategies of epidemics is often hampered by constraints on experiments at large spatiotemporal scales. A promising approach consists of modeling the biological epidemic process and human interventions, which both impact disease spread. However, few methods enable the simultaneous optimization of the numerous parameters of sophisticated control strategies.

View Article and Find Full Text PDF

Cauliflower mosaic virus (CaMV; family ) responds to the presence of aphid vectors on infected plants by forming specific transmission morphs. This phenomenon, coined transmission activation (TA), controls plant-to-plant propagation of CaMV. A fundamental question is whether other viruses rely on TA.

View Article and Find Full Text PDF

Multipartite viruses package their genomic segments independently and thus incur the risk of being unable to transmit their entire genome during host-to-host transmission if they undergo severe bottlenecks. In this paper, we estimated the bottleneck size during one infection cycle of (FBNSV), an octopartite nanovirus whose segments have been previously shown to converge to particular and unequal relative frequencies within host plants and aphid vectors. Two methods were used to derive this estimate, one based on the probability of transmission of the virus and the other based on the temporal evolution of the relative frequency of markers for two genomic segments, one frequent and one rare (segment N and S, respectively), both in plants and vectors.

View Article and Find Full Text PDF

Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but parameter estimation can be hampered when the timing of the epidemiological events is uncertain, and in the presence of interactions between disease spread, surveillance, and control.

View Article and Find Full Text PDF

Identifying the key factors underlying the spread of a disease is an essential but challenging prerequisite to design management strategies. To tackle this issue, we propose an approach based on sensitivity analyses of a spatiotemporal stochastic model simulating the spread of a plant epidemic. This work is motivated by the spread of sharka, caused by , in a real landscape.

View Article and Find Full Text PDF

During the past decade, knowledge of pathogen life history has greatly benefited from the advent and development of molecular epidemiology. This branch of epidemiology uses information on pathogen variation at the molecular level to gain insights into a pathogen's niche and evolution and to characterize pathogen dispersal within and between host populations. Here, we review molecular epidemiology approaches that have been developed to trace plant virus dispersal in landscapes.

View Article and Find Full Text PDF

Of worldwide economic importance, Tomato yellow leaf curl virus (TYLCV, Begomovirus) is responsible for one of the most devastating plant diseases in warm and temperate regions. The DNA begomoviruses (Geminiviridae) are transmitted by the whitefly species complex Bemisia tabaci. Although geminiviruses have long been described as circulative non-propagative viruses, observations such as long persistence of TYLCV in B.

View Article and Find Full Text PDF

The relative durations of the incubation period (the time between inoculation and symptom expression) and of the latent period (the time between inoculation and infectiousness of the host) are poorly documented for plant diseases. However, the extent of asynchrony between the ends of these two periods (i.e.

View Article and Find Full Text PDF

The genetic determinism of viral traits can generally be dissected using either forward or reverse genetics because the clonal reproduction of viruses does not require the use of approaches based on laboratory crosses. Nevertheless, we hypothesized that recombinant viruses could be analyzed as sexually reproducing organisms, using either a quantitative trait loci (QTL) approach or a locus-by-locus fixation index (FST). Locus-by-locus FST analysis, and four different regressions and interval mapping algorithms of QTL analysis were applied to a phenotypic and genotypic dataset previously obtained from 47 artificial recombinant genomes generated between two begomovirus species.

View Article and Find Full Text PDF

Many plant epidemics that cause major economic losses cannot be controlled with pesticides. Among them, sharka epidemics severely affect prunus trees worldwide. Its causal agent, Plum pox virus (PPV; genus Potyvirus), has been classified as a quarantine pathogen in numerous countries.

View Article and Find Full Text PDF

The within-host diversity of virus populations can be drastically limited during between-host transmission, with primary infection of hosts representing a major constraint to diversity maintenance. However, there is an extreme paucity of quantitative data on the demographic changes experienced by virus populations during primary infection. Here, the multiplicity of cellular infection (MOI) and population bottlenecks were quantified during primary mosquito infection by Venezuelan equine encephalitis virus, an arbovirus causing neurological disease in humans and equids.

View Article and Find Full Text PDF

Biological invasions are the main causes of emerging viral diseases and they favour the co-occurrence of multiple species or strains in the same environment. Depending on the nature of the interaction, co-occurrence can lead to competitive exclusion or coexistence. The successive fortuitous introductions of two strains of Tomato yellow leaf curl virus (TYLCV-Mld and TYLCV-IL) in Réunion Island provided an ideal opportunity to study the invasion of, and competition between, these worldwide emerging pathogens.

View Article and Find Full Text PDF

Advances in sequencing technology coupled with new integrative approaches to data analysis provide a potentially transformative opportunity to use pathogen genome data to advance our understanding of transmission. However, to maximize the insights such genetic data can provide, we need to understand more about how the microevolution of pathogens is observed at different scales of biological organization. Here, we examine the evolutionary processes in foot-and-mouth disease virus observed at different scales, ranging from the tissue, animal, herd and region.

View Article and Find Full Text PDF

The accurate identification of the route of transmission taken by an infectious agent through a host population is critical to understanding its epidemiology and informing measures for its control. However, reconstruction of transmission routes during an epidemic is often an underdetermined problem: data about the location and timings of infections can be incomplete, inaccurate, and compatible with a large number of different transmission scenarios. For fast-evolving pathogens like RNA viruses, inference can be strengthened by using genetic data, nowadays easily and affordably generated.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondkcg8agq063cmvl04n5sicjgimis5bu5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once