Background: The potential synergy between interleukin-12 (IL-12) and IL-15 holds promise for more effective solid tumor immunotherapy. Nevertheless, previous clinical trials involving therapeutic cytokines have encountered obstacles such as short pharmacokinetics, limited tumor microenvironment (TME) targeting, and substantial systemic toxicity.
Methods: To address these challenges, we fused single-chain human IL-12 and native human IL-15 in onto a fully human albumin binding (FAB) domain single-chain antibody fragment (scFv).
The metabotropic glutamate receptor 4 (mGluR4) is an emerging target for the treatment of Parkinson's disease (PD). However, since the discovery of its therapeutic potential, no ligand has been successfully developed enough to be tested in the clinic. In the present paper, we report for the first time the medicinal chemistry efforts conducted around the pharmacological tool (-)-PHCCC.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
May 2017
Diabetic peripheral neuropathy (DPN) remains one of the most common and serious complications of diabetes. Currently, pharmacological agents are limited to treating the pain associated with DPN, and do not address the underlying pathological mechanisms driving nerve damage, thus leaving a significant unmet medical need. Interestingly, research conducted using exercise as a treatment for DPN has revealed interleukin-6 (IL-6) signaling to be associated with many positive benefits such as enhanced blood flow and lipid metabolism, decreased chronic inflammation, and peripheral nerve fiber regeneration.
View Article and Find Full Text PDFOrexin-expressing neurons are present in hypothalamic nuclei and send projections toward mesolimbic regions such as the nucleus accumbens (NAc), a key brain region implicated in the processing of the motivational significance of reinforcers. Recent evidence found that activation of the orexin system can lead to a state of hyperarousal that may facilitate drug craving or contribute to vulnerability to drug relapse. This study aimed at assessing the effects of the orexin-1 receptor antagonist SB-334867 [1-(2-methylbenzoxazol-6-yl)-3-[1,5]naphthyridin-4-yl-urea hydrochloride] on amphetamine-induced dopamine (DA) release in the shell subregion of the NAc by means of in vivo microdialysis in freely moving rats.
View Article and Find Full Text PDFThe gut-hormone ghrelin endogenously binds to the ghrelin receptor (GHS-R) to promote foraging and feeding behaviours mainly via the hypothalamic arcuate nucleus (ARC). GHS-Rs are also expressed in midbrain dopaminergic neurons of the ventral tegmental area (VTA) suggesting that ghrelin may modulate the mesolimbic dopamine (DA) system. In support of this hypothesis, previous results have shown that intraventricular administration of ghrelin in rats increases DA levels in the nucleus accumbens (NAc).
View Article and Find Full Text PDFProtein kinases and phosphatases can alter the impact of excitotoxicity resulting from ischemia by concurrently modulating apoptotic/survival pathways. Here, we show that protein phosphatase 1 (PP1), known to constrain neuronal signaling and synaptic strength (Mansuy et al., 1998; Morishita et al.
View Article and Find Full Text PDFSynaptic plasticity is an important cellular mechanism that underlies memory formation. In brain areas involved in memory such as the hippocampus, long-term synaptic plasticity is bidirectional. Major forms of bidirectional plasticity encompass long-term potentiation (LTP), LTP reversal (depotentiation) and long-term depression (LTD).
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
April 2003
This article reviews technical and conceptual advances in unravelling the molecular bases of long-term potentiation (LTP), learning and memory using genetic approaches. We focus on studies aimed at testing a model suggesting that protein kinases and protein phosphatases balance each other to control synaptic strength and plasticity. We describe how gene 'knock-out' technology was initially exploited to disrupt the Ca(2+)/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha) gene and how refined knock-in techniques later allowed an analysis of the role of distinct phosphorylation sites in CaMKII.
View Article and Find Full Text PDF