Publications by authors named "Gaehang Lee"

Plasmonic nanoparticles can be assembled into a superlattice, to form optical metamaterials, particularly targeting precise control of optical properties such as refractive index (RI). The superlattices exhibit enhanced near-field, given the sufficiently narrow gap between nanoparticles supporting multiple plasmonic resonance modes only realized in proximal environments. Herein, the planar superlattice of plasmonic Au nanohexagons (AuNHs) with precisely controlled geometries such as size, shape, and edge-gaps is reported.

View Article and Find Full Text PDF

Nanophotonics relies on precise control of refractive index (RI) which can be designed with metamaterials. Plasmonic superstructures of nanoparticles (NPs) can suggest a versatile way of tuning RI. However, the plasmonic effects in the superstructures demand 1 nm-level exquisite control over the interparticle gap, which is challenging in a sub-wavelength NPs.

View Article and Find Full Text PDF

Electrochemical carbon dioxide reduction is a mild and eco-friendly approach for CO mitigation and producing value-added products. For selective electrochemical CO reduction, single-crystalline Au particles (octahedron, truncated-octahedron, and sphere) are synthesized by consecutive growth and chemical etching using a polydiallyldimethylammonium chloride (polyDDA) surfactant, and are surface-functionalized. Monodisperse, single-crystalline Au nanoparticles provide an ideal platform for evaluating the Au surface as a CO reduction catalyst.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) have been widely used as nanocarriers in drug delivery to improve the efficiency of chemotherapy treatment and enhance early disease detection. The advantages of AuNPs include their excellent biocompatibility, easy modification and functionalization, facile synthesis, low toxicity, and controllable particle size. This study aimed to synthesize a conjugated citraconic anhydride link between morphologically homogeneous AuNPs and doxorubicin (DOX) (DOX-AuNP).

View Article and Find Full Text PDF

Confining light in extremely small cavities is crucial in nanophotonics, central to many applications. Employing a unique nanoparticle-on-mirror plasmonic structure and using a graphene film as a spacer, we create nanoscale cavities with volumes of only a few tens of cubic nanometers. The ultracompact cavity produces extremely strong optical near-fields, which facilitate the formation of single carbon quantum dots in the cavity and simultaneously empower the strong coupling between the excitons of the formed carbon quantum dot and the localized surface plasmons.

View Article and Find Full Text PDF

Gold nanoparticles are widely exploited for biological and biotechnical applications owing to their stability, biocompatibility, and known effects on cellular behaviors. Many studies have focused on nanoparticles that are internalized into cells, but extracellular nanoparticles also can regulate cell behavior, a practice known as in-plane surface nanotopography. We demonstrated that nanobarriers composed of morphologically homogeneous gold nanospheres prolonged the mitotic (M) phase in the cervical cancer cell line HeLa without inducing apoptosis.

View Article and Find Full Text PDF

Au@Ag core-shell structures have received particular interest due to their localized surface plasmon resonance properties and great potential as oxygen reduction reaction catalysts and building blocks for self-assembly. In this study, Au@Ag core-shell nanocubes (Au@AgNCs) were fabricated in a facile manner stepwise Ag reduction on Au nanoparticles (AuNPs). The size of the Au@AgNCs and their optical properties can be simply modulated by changing the Ag shell thickness.

View Article and Find Full Text PDF

In this study, hierarchically three-dimensional (3D) nanotubular sea urchin-shaped iron oxide nanostructures (3D-FeO) were synthesized by a facile and rapid ultrasound irradiation method. Additives, templates, inert gas atmosphere, pH regulation, and other complicated procedures were not required. Dense 3D-FeO with a relatively large Brunauer-Emmett-Teller (BET) surface area of 129.

View Article and Find Full Text PDF

Highly stable and magnetically separable mesoporous silica nanospheres (MSNs) embedded with 4.6 ± 0.8 nm FeCo/graphitic carbon shell nanocrystals (FeCo/GC NCs@MSNs) were synthesized by thermal decomposition of metal precursors in MSNs and subsequent methane CVD.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) nanomanipulation has been viewed as a deterministic method for the assembly of plasmonic metamolecules because it enables unprecedented engineering of clusters with exquisite control over particle number and geometry. Nevertheless, the dimensionality of plasmonic metamolecules via AFM nanomanipulation is limited to 2D, so as to restrict the design space of available artificial electromagnetisms. Here, we show that "2D" nanomanipulation of the AFM tip can be used to assemble "3D" plasmonic metamolecules in a versatile and deterministic way by dribbling highly spherical and smooth gold nanospheres (NSs) on a nanohole template rather than on a flat surface.

View Article and Find Full Text PDF

Synthesis of shape-controlled Pt nanocrystals is substantial and important for enhancing chemical and electrochemical reactions. However, the removal of capping agents, shape-controlling chemicals, on Pt surfaces is essential prior to conducting the catalytic reactions. Here we report a facile one-pot synthesis of Pt nanocubes directly grown on carbon supports (Pt nanocubes/C) with modulating the kinetic reaction factors for shaping the nanocrystals, but without adding any capping agents for preserving the clean Pt surfaces.

View Article and Find Full Text PDF

The smallness of natural molecules and atoms with respect to the wavelength of light imposes severe limits on the nature of their optical response. For example, the well-known argument of Landau and Lifshitz and its recent extensions that include chiral molecules show that the electric dipole response dominates over the magneto-electric (bianisotropic) and an even smaller magnetic dipole optical response for all natural materials. Here, we experimentally demonstrate that both these responses can be greatly enhanced in plasmonic nanoclusters.

View Article and Find Full Text PDF

Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the extinction coefficients of gold nanoparticles (AuNPs) and how they differ between ideal spherical shapes and non-ideal polygonal shapes, based on Mie theory.
  • Researchers successfully created mono-crystalline, ultra-smooth, ideally spherical AuNPs ranging from 40-100 nm in size, using a new synthetic method.
  • The extinction coefficients of these ideal spheres align more closely with theoretical predictions than those of faceted AuNPs, highlighting the significance of particle shape in their optical properties.
View Article and Find Full Text PDF

Atomic force microscope (AFM)-enabled manipulation of individual metallic nanoparticles (NPs) has proven useful for assembling diverse structural motifs of metamolecules. However, for the reliable verifications of their electric/magnetic behaviors and translations into practical applications (e.g.

View Article and Find Full Text PDF

Electro-sterically stabilized gold suspensions were employed in a colorimetric system for the detection of strong acid in water. Using oleyamine and oleic acid as steric stabilizer in 1,2-dichlorobenzene, hydrophobic gold nanoparticles were first synthesized by a reduction reaction of gold salts and were then transferred into water with a cationic surfactant. When the hydrochlo- ric acid solution higher than critical concentration was injected, particles were quickly aggregated and precipitated, creating a clear solution from the colored suspension.

View Article and Find Full Text PDF

We demonstrate an experimental in situ observation of the temperature-dependent evolution of doping- and stress-mediated structural phase transitions in an individual single-crystalline VO₂ nanobeam on a Au-coated substrate under exposure to hydrogen gas using spatially resolved Raman spectroscopy. The nucleation temperature of the rutile R structural phase in the VO₂ nanobeam upon heating under hydrogen gas was lower than that under air. The spatial structural phase evolution behavior along the length of the VO₂ nanobeam under hydrogen gas upon heating was much more inhomogeneous than that along the length of the same nanobeam under air.

View Article and Find Full Text PDF

Ultrasmooth, highly spherical monocrystalline gold particles were prepared by a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices. The etching process effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more.

View Article and Find Full Text PDF

β-FeOOH nanorod (NR) catalysts prepared by ultrasonic-irradiated chemical synthesis enabled lithium-air cells to have high round-trip efficiency and extremely low overpotential as well as an outstanding rate capability. Good catalytic activities of the β-FeOOH NR bundle could be ascribed to its crystal structure, which consists of 2 × 2 tunnels formed by edge- and corner-sharing Fe(O,OH)6 octahedra as well as to its one-dimensional morphology, which makes the configured electrode highly porous, indicating that the -OOH-based catalyst can be a good substitute for oxide-base catalysts in lithium-air batteries. The ultrasonic-irradiated chemical synthesis suggested here may be a good solution to optimize the morphology of catalyst materials for maximum catalytic activity.

View Article and Find Full Text PDF

Hierarchical hollow spheres of Fe2 O3 @polyaniline are fabricated by template-free synthesis of iron oxides followed by a post in- and exterior construction. A combination of large surface area with porous structure, fast ion/electron transport, and mechanical integrity renders this material attractive as a lithium-ion anode, showing superior rate capability and cycling performance.

View Article and Find Full Text PDF

We report on the synthesis of two types of Ag nanoparticles (NPs) and the influence of adsorbed surfactant size on the NP surface for surface-enhanced Raman scattering (SERS) signals. Both particles were of similar size and morphology but were covered by surfactants of different sizes; one surfactant was sodium citrate (molecular weight: 258) and the other was sodium polyacrylate (molecular weight: 2100). For SERS measurement, 4-mecapobenzoic acid and 4-naphthalene thiol as Raman-active dyes were immobilized on the surface of each AgNP.

View Article and Find Full Text PDF

The preparation of anisotropic colloidal particles by a simple yet versatile temperature-controlled swelling process is described. The resulting polymeric particles feature a surface dimple, the size and shape of which were determined by the amount of oil captured in particles and the interfacial tension between the three phases: polystyrene (PS), decane, and the suspending medium. Following the removal of free or physically adsorbed surfactant from the swollen particles, hydrophobic dimples were produced upon evaporation of the oil phase.

View Article and Find Full Text PDF

Submicron emulsions could be produced via the tip-streaming process in a flow-focusing microfluidic device. In this article, the stability of the liquid cone and thread for tip-streaming mode could be significantly improved by employing a three-dimensional flow-focusing device, in which the hydraulic resistance was adjusted by modulating the channel heights in the flow focusing area, orifice, downstream and dispersed phase inlet channel. The pressure range for tip-streaming mode was enlarged significantly compared with two-dimensional flow-focusing devices.

View Article and Find Full Text PDF

Palladium nanoparticles (PdNPs) were conveniently prepared in tetraglyme (TG) solution using a variety of palladium precursors. At 140 °C, TG promoted Pd(3)(OAc)(6) to produce irregular shaped PdNPs with an average size of 4 nm. When these PdNPs were re-dispersed in TG and used for the dehydrogenation of ammonia borane (AB) at 85 °C, remarkably enhanced catalytic performance was achieved to release 2.

View Article and Find Full Text PDF

The hierarchically structured mesoporous LiMn(2)O(4) (LMO) nanospheres were synthesized using a template-free self-assembly process that was coupled with ultrasound (U). The ultrasound technique suggested here is very powerful for controlling an ordered nanostructure and improving crystallinity with large single-crystalline domains. Owing to the hierarchical mesoporous structure and high crystallinity, U-LMO provides an excellent rate capability and cycle stability with a capacity retention of more than 98% up to 50 cycles at a 0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionoqmri5h2c8v0vmt7ts5d5ltj3b6p36gj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once