Cytokines function as communication tools of the immune system, serving critical functions in many biological responses and shaping the immune response. When cytokine production or their biological activity goes awry, the homeostatic balance of the immune response is altered, leading to the development of several pathologies such as autoimmune and inflammatory disorders. Cytokines bind to specific receptors on cells, triggering the activation of intracellular enzymes known as Janus kinases (JAKs).
View Article and Find Full Text PDFObjectives: To study the molecular pathogenesis of PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome, a debilitating hereditary autoinflammatory disease caused by dominant mutation in .
Methods: Gene knock-out and knock-in mice were generated to develop an animal model. THP1 and retrovirally transduced U937 human myeloid leukaemia cell lines, peripheral blood mononuclear cells, small interfering RNA (siRNA) knock-down, site-directed mutagenesis, cytokine immunoassays, coimmunoprecipitation and immunoblotting were used to study inflammasome activation.
Objectives: Ageing and inflammation are associated with clonal haematopoiesis (CH), the emergence of somatic mutations in haematopoietic cells. This study details CH in patients with systemic vasculitis in association with clinical, haematological and immunological parameters.
Methods: Patients with three forms of vasculitis were screened for CH in peripheral blood by error-corrected sequencing.
Background: Cytokines are soluble factors that affect host defense and maintain immune homeostasis. Altered cytokine production leads to a dysfunctional immune responses and immune-related diseases. Cytokines bind to specific receptors and trigger various intracellular signaling cascades and targeting cytokines and/or their receptors has been effective in treating inflammatory diseases.
View Article and Find Full Text PDFFundamental insight gained over the last decades led to the discovery of cytokines as pivotal drivers of inflammatory diseases such as rheumatoid arthritis, psoriasis/psoriasis arthritis, inflammatory bowel diseases, atopic dermatitis and spondylarthritis. A deeper understanding of the pro-inflammatory and anti-inflammatory effects of various cytokines has prompted new cytokine-targeting therapies, which revolutionised the treatment options in the last years for patients with inflammatory disorders. Disease-associated immune responses typically involve a complex interplay of multiple cytokines.
View Article and Find Full Text PDFDermatomyositis (DM), antisynthetase syndrome (AS), immune-mediated necrotizing myopathy (IMNM), and inclusion body myositis (IBM) are four major types of idiopathic inflammatory myopathy (IIM). Muscle biopsies from each type of IIM have unique transcriptomic profiles. MicroRNAs (miRNAs) target messenger RNAs (mRNAs), thereby regulating their expression and modulating transcriptomic profiles.
View Article and Find Full Text PDFBackground: Disabling pansclerotic morphea (DPM) is a rare systemic inflammatory disorder, characterized by poor wound healing, fibrosis, cytopenias, hypogammaglobulinemia, and squamous-cell carcinoma. The cause is unknown, and mortality is high.
Methods: We evaluated four patients from three unrelated families with an autosomal dominant pattern of inheritance of DPM.
Protein kinases play a major role in cellular activation processes, including signal transduction by diverse immunoreceptors. Given their roles in cell growth and death and in the production of inflammatory mediators, targeting kinases has proven to be an effective treatment strategy, initially as anticancer therapies, but shortly thereafter in immune-mediated diseases. Herein, we provide an overview of the status of small molecule inhibitors specifically generated to target protein kinases relevant to immune cell function, with an emphasis on those approved for the treatment of immune-mediated diseases.
View Article and Find Full Text PDFFluorescent cell barcoding (FCB) is a useful flow cytometric technique for high-throughput multiplexed analyses and can minimize technical variations after preliminary optimization and validation of protocols. To date, FCB is widely used for measurement of phosphorylation status of certain proteins, while it can be also employed for cellular viability assessment. In this chapter, we describe the protocol to perform FCB combined with viability assessment on lymphocytes and monocytes using manual and computational analysis.
View Article and Find Full Text PDFA diet rich in saturated fat and carbohydrates causes low-grade chronic inflammation in several organs, including the liver, ultimately driving nonalcoholic steatohepatitis. In this setting, environment-driven lipotoxicity and glucotoxicity induce liver damage, which promotes dendritic cell activation and generates a major histocompatibility complex class II (MHC-II) immunopeptidome enriched with peptides derived from proteins involved in cellular metabolism, oxidative phosphorylation, and the stress responses. Here, we demonstrated that lipotoxicity and glucotoxicity, as driven by a high-fat and high-fructose (HFHF) diet, promoted MHC-II presentation of nested T and B cell epitopes from protein disulfide isomerase family A member 3 (PDIA3), which is involved in immunogenic cell death.
View Article and Find Full Text PDFObjectives: Premature cardiovascular events in systemic lupus erythematosus (SLE) contribute to morbidity and mortality, with no effective preventive strategies described to date. Immune dysregulation and metabolic disturbances appear to play prominent roles in the induction of vascular disease in SLE. The peroxisome proliferator activated receptor-gamma agonist pioglitazone (PGZ suppresses vascular damage and immune dysregulation in murine lupus and improves endothelial dysfunction in other inflammatory diseases.
View Article and Find Full Text PDFObjectives: To test the hypothesis that ROSAH (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis and headache) syndrome, caused by dominant mutation in , is an autoinflammatory disease.
Methods: This cohort study systematically evaluated 27 patients with ROSAH syndrome for inflammatory features and investigated the effect of mutations on immune signalling. Clinical, immunologic and radiographical examinations were performed, and 10 patients were empirically initiated on anticytokine therapy and monitored.
Introduction: The Janus kinase family includes four members - JAK1, JAK2, JAK3, TYK2 - that are selectively associated with type I and II cytokine receptors. Jak-inhibitors (Jakinibs) are a new class of drugs for treating inflammatory diseases. Five Jakinibs are currently available for Rheumatoid Arthritis (RA): tofacitinib, baricitinib, upadacitinib, filgotinib and peficitinib.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2021
Over the last 25 years, inhibition of Janus kinases (JAKs) has been pursued as a modality for treating various immune and inflammatory disorders. While the clinical development of JAK inhibitors (jakinibs) began with the investigation of their use in allogeneic transplantation, their widest successful application came in autoimmune and allergic diseases. Multiple molecules have now been approved for diseases ranging from rheumatoid and juvenile arthritis to ulcerative colitis, atopic dermatitis, graft-versus-host-disease (GVHD) and other inflammatory pathologies in 80 countries around the world.
View Article and Find Full Text PDFJ Allergy Clin Immunol
October 2021
Since its discovery, the Janus kinase-signal transduction and activation of transcription (JAK-STAT) pathway has become recognized as a central mediator of widespread and varied human physiological processes. The field of JAK-STAT biology, particularly its clinical relevance, continues to be shaped by 2 important advances. First, the increased use of genomic sequencing has led to the discovery of novel clinical syndromes caused by mutations in JAK and STAT genes.
View Article and Find Full Text PDF