Publications by authors named "Gadi Afek"

We propose a search for low mass dark matter particles through momentum recoils caused by their scattering from trapped, nanometer-scale objects. Our projections show that even with a modest array of femtogram-mass sensors, parameter space beyond the reach of existing experiments can be explored. The case of smaller, attogram-mass sensors is also analyzed-where dark matter can coherently scatter from the entire sensor-enabling a large enhancement in the scattering cross-section relative to interactions with single nuclei.

View Article and Find Full Text PDF

Results are reported from a search for a class of composite dark matter models with feeble long-range interactions with normal matter. We search for impulses arising from passing dark matter particles by monitoring the mechanical motion of an optically levitated nanogram mass over the course of several days. Assuming such particles constitute the dominant component of dark matter, this search places upper limits on their interaction with neutrons of α_{n}≤1.

View Article and Find Full Text PDF

We propose and demonstrate a method to produce a thin and highly collimated annular beam that propagates similarly to an ideal thin Gaussian ring beam, maintaining its excellent propagation properties. Our optical configuration is composed of a binary axicon, a circular binary phase grating, and a lens, making it robust and well suited for high-power lasers. It has a near-perfect circular profile with a dark center, and its large radius to waist ratio is achieved with high conversion efficiency.

View Article and Find Full Text PDF

In this Letter, we present a measurement of the phase-space density distribution (PSDD) of ultracold ^{87}Rb atoms performing 1D anomalous diffusion. The PSDD is imaged using a direct tomographic method based on Raman velocity selection. It reveals that the position-velocity correlation function C_{xv}(t) builds up on a time scale related to the initial conditions of the ensemble and then decays asymptotically as a power law.

View Article and Find Full Text PDF