Publications by authors named "Gadarla R Reddy"

Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH).

View Article and Find Full Text PDF

Firefly luciferase adenylates and oxidizes d-luciferin to chemically generate visible light and is widely used for biological assays and imaging. Here we show that both luciferase and luciferin can be reengineered to extend the scope of this light-emitting reaction. D-Luciferin can be replaced by synthetic luciferin analogues that increase near-infrared photon flux >10-fold over that of D-luciferin in live luciferase-expressing cells.

View Article and Find Full Text PDF

Beetle luciferases are thought to have evolved from fatty acyl-CoA synthetases present in all insects. Both classes of enzymes activate fatty acids with ATP to form acyl-adenylate intermediates, but only luciferases can activate and oxidize d-luciferin to emit light. Here we show that the Drosophila fatty acyl-CoA synthetase CG6178, which cannot use d-luciferin as a substrate, is able to catalyze light emission from the synthetic luciferin analog CycLuc2.

View Article and Find Full Text PDF

Firefly luciferase is the most widely used optical reporter for noninvasive bioluminescence imaging (BLI) in rodents. BLI relies on the ability of the injected luciferase substrate D-luciferin to access luciferase-expressing cells and tissues within the animal. Here we show that injection of mice with a synthetic luciferin, CycLuc1, improves BLI with existing luciferase reporters and enables imaging in the brain that could not be achieved with D-luciferin.

View Article and Find Full Text PDF

Firefly luciferase-catalyzed light emission from D-luciferin is widely used as a reporter of gene expression and enzymatic activity both in vitro and in vivo. Despite the power of bioluminescence for imaging and drug discovery, light emission from firefly luciferase is fundamentally limited by the physical properties of the D-luciferin substrate. We and others have synthesized aminoluciferin analogs that exhibit light emission at longer wavelengths than D-luciferin and have increased affinity for luciferase.

View Article and Find Full Text PDF

Firefly luciferase utilizes the chemical energy of ATP and oxygen to convert its substrate, D-luciferin, into an excited-state oxyluciferin molecule. Relaxation of this molecule to the ground state is responsible for the yellow-green light emission. Synthetic cyclic alkylaminoluciferins that allow robust red-shifted light emission with the modified luciferase Ultra-Glo are described.

View Article and Find Full Text PDF

Background: Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1) virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission.

View Article and Find Full Text PDF

A series of aroylnaphthalene derivatives were prepared as bioisosteres of combrestatin A-4 and evaluated for anticancer activity. 2-Amino-1-aroylnaphthalene and 2-hydroxy-1-aroylnaphthalene, 9 and 8, respectively, showed strong antiproliferative activity with IC(50) values of 2.1-26.

View Article and Find Full Text PDF