Combining information from multiple GWASs for a disease and its risk factors has proven a powerful approach for development of polygenic risk scores (PRSs). This may be particularly useful for type 2 diabetes (T2D), a highly polygenic and heterogeneous disease where the additional predictive value of a PRS is unclear. Here, we use a meta-scoring approach to develop a metaPRS for T2D that incorporated genome-wide associations from both European and non-European genetic ancestries and T2D risk factors.
View Article and Find Full Text PDFBackground: Recently, common genetic risk factors for intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (ASAH) were found to explain a large amount of disease heritability and therefore have potential to be used for genetic risk prediction. We constructed a genetic risk score to (1) predict ASAH incidence and IA presence (combined set of unruptured IA and ASAH) and (2) assess its association with patient characteristics.
Methods: A genetic risk score incorporating genetic association data for IA and 17 traits related to IA (so-called metaGRS) was created using 1161 IA cases and 407 392 controls from the UK Biobank population study.
Background: The use of a polygenic risk score (PRS) to improve risk prediction of coronary heart disease (CHD) events has been demonstrated to have clinical utility in the general adult population. However, the prognostic value of a PRS for CHD has not been examined specifically in older populations of individuals aged ≥70 years, who comprise a distinct high-risk subgroup. The objective of this study was to evaluate the predictive value of a PRS for incident CHD events in a prospective cohort of older individuals without a history of cardiovascular events.
View Article and Find Full Text PDFCardiometabolic diseases are frequently polygenic in architecture, comprising a large number of risk alleles with small effects spread across the genome. Polygenic scores (PGS) aggregate these into a metric representing an individual's genetic predisposition to disease. PGS have shown promise for early risk prediction and there is an open question as to whether PGS can also be used to understand disease biology.
View Article and Find Full Text PDFEarly prediction of risk of cardiovascular disease (CVD), including stroke, is a cornerstone of disease prevention. Clinical risk scores have been widely used for predicting CVD risk from known risk factors. Most CVDs have a substantial genetic component, which also has been confirmed for stroke in recent gene discovery efforts.
View Article and Find Full Text PDFBackground And Purpose: Polygenic risk scores (PRSs) can be used to predict ischemic stroke (IS). However, further validation of PRS performance is required in independent populations, particularly older adults in whom the majority of strokes occur.
Methods: We predicted risk of incident IS events in a population of 12 792 healthy older individuals enrolled in the ASPREE trial (Aspirin in Reducing Events in the Elderly).
We present the Polygenic Score (PGS) Catalog (https://www.PGSCatalog.org), an open resource of published scores (including variants, alleles and weights) and consistently curated metadata required for reproducibility and independent applications.
View Article and Find Full Text PDFBackground: Polygenic risk scores (PRSs) can stratify populations into cardiovascular disease (CVD) risk groups. We aimed to quantify the potential advantage of adding information on PRSs to conventional risk factors in the primary prevention of CVD.
Methods And Findings: Using data from UK Biobank on 306,654 individuals without a history of CVD and not on lipid-lowering treatments (mean age [SD]: 56.
Objectives: Juvenile idiopathic arthritis (JIA) is an autoimmune disease and a common cause of chronic disability in children. Diagnosis of JIA is based purely on clinical symptoms, which can be variable, leading to diagnosis and treatment delays. Despite JIA having substantial heritability, the construction of genomic risk scores (GRSs) to aid or expedite diagnosis has not been assessed.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFRecent genome-wide association studies in stroke have enabled the generation of genomic risk scores (GRS) but their predictive power has been modest compared to established stroke risk factors. Here, using a meta-scoring approach, we develop a metaGRS for ischaemic stroke (IS) and analyse this score in the UK Biobank (n = 395,393; 3075 IS events by age 75). The metaGRS hazard ratio for IS (1.
View Article and Find Full Text PDFCytokines are essential regulatory components of the immune system, and their aberrant levels have been linked to many disease states. Despite increasing evidence that cytokines operate in concert, many of the physiological interactions between cytokines, and the shared genetic architecture that underlies them, remain unknown. Here, we aimed to identify and characterize genetic variants with pleiotropic effects on cytokines.
View Article and Find Full Text PDFBackground: GlycA is a nuclear magnetic resonance (NMR) spectroscopy biomarker that predicts risk of disease from myriad causes. It is heterogeneous; arising from five circulating glycoproteins with dynamic concentrations: alpha-1 antitrypsin (AAT), alpha-1-acid glycoprotein (AGP), haptoglobin (HP), transferrin (TF), and alpha-1-antichymotrypsin (AACT). The contributions of each glycoprotein to the disease and mortality risks predicted by GlycA remain unknown.
View Article and Find Full Text PDFPrediction of disease risk is an essential part of preventative medicine, often guiding clinical management. Risk prediction typically includes risk factors such as age, sex, family history of disease and lifestyle (e.g.
View Article and Find Full Text PDFBackground: Coronary artery disease (CAD) has substantial heritability and a polygenic architecture. However, the potential of genomic risk scores to help predict CAD outcomes has not been evaluated comprehensively, because available studies have involved limited genomic scope and limited sample sizes.
Objectives: This study sought to construct a genomic risk score for CAD and to estimate its potential as a screening tool for primary prevention.
Background: Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up.
View Article and Find Full Text PDFBioinformatics
September 2017
Motivation: Principal component analysis (PCA) is a crucial step in quality control of genomic data and a common approach for understanding population genetic structure. With the advent of large genotyping studies involving hundreds of thousands of individuals, standard approaches are no longer feasible. However, when the full decomposition is not required, substantial computational savings can be made.
View Article and Find Full Text PDFInteraction analysis of GWAS can detect signal that would be ignored by single variant analysis, yet few robust interactions in humans have been detected. Recent work has highlighted interactions in the MHC region between known HLA risk haplotypes for various autoimmune diseases. To better understand the genetic interactions underlying celiac disease (CD), we have conducted exhaustive genome-wide scans for pairwise interactions in five independent CD case-control studies, using a rapid model-free approach to examine over 500 billion SNP pairs in total.
View Article and Find Full Text PDFAims: Genetics plays an important role in coronary heart disease (CHD) but the clinical utility of genomic risk scores (GRSs) relative to clinical risk scores, such as the Framingham Risk Score (FRS), is unclear. Our aim was to construct and externally validate a CHD GRS, in terms of lifetime CHD risk and relative to traditional clinical risk scores.
Methods And Results: We generated a GRS of 49 310 SNPs based on a CARDIoGRAMplusC4D Consortium meta-analysis of CHD, then independently tested it using five prospective population cohorts (three FINRISK cohorts, combined n = 12 676, 757 incident CHD events; two Framingham Heart Study cohorts (FHS), combined n = 3406, 587 incident CHD events).
Network modules-topologically distinct groups of edges and nodes-that are preserved across datasets can reveal common features of organisms, tissues, cell types, and molecules. Many statistics to identify such modules have been developed, but testing their significance requires heuristics. Here, we demonstrate that current methods for assessing module preservation are systematically biased and produce skewed p values.
View Article and Find Full Text PDFThe biomarker glycoprotein acetylation (GlycA) has been shown to predict risk of cardiovascular disease and all-cause mortality. Here, we characterize biological processes associated with GlycA by leveraging population-based omics data and health records from >10,000 individuals. Our analyses show that GlycA levels are chronic within individuals for up to a decade.
View Article and Find Full Text PDFBackground: Genomic prediction aims to leverage genome-wide genetic data towards better disease diagnostics and risk scores. We have previously published a genomic risk score (GRS) for celiac disease (CD), a common and highly heritable autoimmune disease, which differentiates between CD cases and population-based controls at a clinically-relevant predictive level, improving upon other gene-based approaches. HLA risk haplotypes, particularly HLA-DQ2.
View Article and Find Full Text PDFCurr Opin Genet Dev
August 2015
Recent advances in genome-wide association studies have stimulated interest in the genomic prediction of disease risk, potentially enabling individual-level risk estimates for early intervention and improved diagnostic procedures. Here, we review recent findings and approaches to genomic prediction model construction and performance, then contrast the potential benefits of such models in two complex human diseases, aiding diagnosis in celiac disease and prospective risk prediction for cardiovascular disease. Early indications are that optimal application of genomic risk scores will differ substantially for each disease depending on underlying genetic architecture as well as current clinical and public health practice.
View Article and Find Full Text PDFCoronary artery disease (CAD) is a complex disease driven by myriad interactions of genetics and environmental factors. Traditionally, studies have analyzed only 1 disease factor at a time, providing useful but limited understanding of the underlying etiology. Recent advances in cost-effective and high-throughput technologies, such as single nucleotide polymorphism (SNP) genotyping, exome/genome/RNA sequencing, gene expression microarrays, and metabolomics assays have enabled the collection of millions of data points in many thousands of individuals.
View Article and Find Full Text PDF