Publications by authors named "Gackowski D"

The aim of the present study was to investigate the concentration- and size-dependent effects of non-functionalized polystyrene nanoparticles (PS-NPs) of varying diameters (29 nm, 44 nm, and 72 nm) on specific epigenetic modifications and gene expression profiles related to carcinogenesis in human peripheral blood mononuclear cells (PBMCs) in vitro. This in vitro human-cell-based model is used to investigate the epigenetic effect of various environmental xenobiotics. PBMCs were exposed to PS-NPs at concentrations ranging from 0.

View Article and Find Full Text PDF

Objectives: Benign Prostatic Hyperplasia (BPH) and Prostate Cancer (PC) are very common pathologies among aging men. Both disorders involve aberrant cell division and differentiation within the prostate gland. However, the direct link between these two disorders still remains controversial.

View Article and Find Full Text PDF

Tamoxifen, a selective estrogen receptor modulator (SERM), exhibits dual agonist or antagonist effects contingent upon its binding to either G-protein-coupled estrogen receptor (GPER) or estrogen nuclear receptor (ESR). Estrogen signaling plays a pivotal role in initiating epigenetic alterations and regulating estrogen-responsive genes in breast cancer. Employing three distinct breast cancer cell lines-MCF-7 (ESR+; GPER+), MDA-MB-231 (ESR-; GPER-), and SkBr3 (ESR-; GPER+)-this study subjected them to treatment with two tamoxifen derivatives: 4-hydroxytamoxifen (4-HT) and endoxifen (Endox).

View Article and Find Full Text PDF

Background: β-Aminobutyric acid (BABA) has been successfully used to prime stress resistance in numerous plant species; however, its effectiveness in forest trees has been poorly explored thus far. This study aimed to investigate the influence of BABA on morphological, physiological, and epigenetic parameters in field elms under various growth conditions. Epigenetic changes were assessed in both DNA and RNA through the use of reversed-phase ultra-performance liquid chromatography (UPLC) coupled with sensitive mass spectrometry.

View Article and Find Full Text PDF

The oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), known as oxi-mCs, garners significant interest in plants as potential epigenetic marks. While research in mammals has established a role in cell reprogramming, carcinogenesis, and gene regulation, their functions in plants remain unclear. In rice, 5hmC has been associated with transposable elements (TEs) and heterochromatin.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of TET proteins in active DNA demethylation, specifically how TETs convert 5-methylcytosine (5-mC) into 5-hydroxymethylcytosine (5-hmC), impacting DNA methylation patterns in breast cancer.
  • Blood samples from 74 breast cancer patients and 71 healthy subjects were analyzed for the expression of demethylation-related genes, with findings showing higher TET3 levels and lower 5-mC/5-hmC in cancer patients.
  • Additionally, breast cancer patients exhibited lower plasma ascorbate levels and increased expression of vitamin C transporters, suggesting a potential link between TET3 activity, DNA demethylation,
View Article and Find Full Text PDF

Prostate cancer (PC) represents one of the most common cancer types worldwide and many patients suffering from this kind of cancer are treated with radiotherapy (RTH). Ionizing irradiation is closely associated with reactive oxygen species (ROS) production and oxidative stress. Over the years the role of vitamin C (VC) in cancer prevention has been highlighted as it may be mediated by its ability to neutralize pro-carcinogenic ROS.

View Article and Find Full Text PDF

Background/aims: Seminal plasma composition is affected by the physiological state of the prostate, the major male reproductive gland. Semen components, like vitamin C, can modulate sperm function. Vitamin C is an effective scavenger of free radicals and is an essential component of enzymes such as TET proteins involved in the DNA demethylation process.

View Article and Find Full Text PDF
Article Synopsis
  • Epigenetic modifications, particularly DNA methylation, are crucial for maintaining genome integrity and regulating gene expression, impacting growth and stress responses in all organisms, including crops.
  • Various techniques for detecting plant DNA methylation exist, such as bisulfite sequencing and methylation-sensitive amplification, each differing in factors like DNA input and resolution.
  • The review compares these methods' effectiveness in model versus crop plants, outlines their strengths and limitations, and emphasizes the importance of understanding both technical and biological variables for choosing the right profiling approach.
View Article and Find Full Text PDF

The rye genome has a large size with a high level of cytosine methylation, which makes it particularly convenient for studying the occurrence of potential cytosine demethylation intermediates. Levels of global 5-hydroxymethylcytosine (5hmC) were analysed by enzyme-linked immunosorbent assay (ELISA) and mass spectrometry in four rye species: Secale cereale, Secale strictum, Secale sylvestre, and Secale vavilovii. The amount of 5hmC showed interspecific variation, and was also variable among organs, i.

View Article and Find Full Text PDF

Plastic nanoparticles are widely spread in the biosphere, but health risk associated with their effect on the human organism has not yet been assessed. The purpose of this study was to determine the genotoxic potential of non-functionalized polystyrene nanoparticles (PS-NPs) of different diameters of 29, 44, and 72 nm in human peripheral blood mononuclear cells (PBMCs) (). To select non-cytotoxic concentrations of tested PS-NPs, we analyzed metabolic activity of PBMCs incubated with these particles in concentrations ranging from 0.

View Article and Find Full Text PDF

In this study, the level of DNA modifications was investigated in three developmental stages of Drosophila melanogaster (larvae, pupae, imago) and in an in vitro model (Schneider 2 cells). Analysis was carried out using two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry. Our method made it possible, for the first time, to analyze a broad spectrum of DNA modifications in the three stages of Drosophila.

View Article and Find Full Text PDF

R-loops are three-stranded nucleic acid structures consisting of an RNA-DNA hybrid and an unpaired strand of nontemplate DNA that represent a major source of genomic instability and are involved in regulation of several important biological processes in eukaryotic cells. A growing body of experimental evidence suggests that RNA moieties of RNA-DNA hybrids may convey RNA modifications influencing various aspects of R-loop biology. Here we present a protocol for quantitative analysis of RNA modifications on RNA-DNA hybrids using stable-isotope dilution ultraperformance liquid chromatography coupled with tandem mass spectrometry (SID-UPLC-MS/MS).

View Article and Find Full Text PDF

Background: Systemic sclerosis (SSc) is a rare autoimmune disease characterized by progressive fibrosis of the skin and internal organs. Besides genetics risk factors, understanding the epigenetic modifications in SSc has been gaining acceleration in recent years. Epigenetic modifications are reversible and defined as druggable targets.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are characterized by genomic instability, which may arise from the global hypomethylation of the DNA. The active DNA demethylation process may be linked with aberrant methylation and can be involved in leukemogenesis. The levels of 5-methylcytosine oxidation products were analyzed in minimally invasive material: the cellular DNA from peripheral blood cells and urine of patients with AML and MDS along with the control group, using isotope-dilution two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry.

View Article and Find Full Text PDF

Ascorbate is an important element of a variety of cellular processes including the control of reactive oxygen species levels. Since reactive oxygen species are implicated as a key factor in tumorigenesis and antitumor therapy, the injection of a large amount of ascorbate is considered beneficial in cancer therapy. Recent studies have shown that ascorbate can cross the plasma membrane through passive diffusion.

View Article and Find Full Text PDF

The active DNA demethylation process may be linked to aberrant methylation and may be involved in leukemogenesis. We investigated the role of epigenetic DNA modifications in childhood acute lymphoblastic leukemia (ALL) diagnostics and therapy monitoring. We analyzed the levels of 5-methyl-2'-deoxycytidine (5-mdC) oxidation products in the cellular DNA and urine of children with ALL (at diagnosis and during chemotherapy, n = 55) using two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry (2D UPLC-MS/MS).

View Article and Find Full Text PDF

Hypermethylation of tumour suppressors and other aberrations of DNA methylation in tumours play a significant role in cancer progression. DNA methylation can be affected by various environmental conditions, including hypoxia. The response to hypoxia is mainly achieved through activation of the transcriptional program associated with HIF1A transcription factor.

View Article and Find Full Text PDF

Chromatin of male and female gametes undergoes a number of reprogramming events during the transition from germ cell to embryonic developmental programs. Although the rearrangement of DNA methylation patterns occurring in the zygote has been extensively characterized, little is known about the dynamics of DNA modifications during spermatid maturation. Here, we demonstrate that the dynamics of 5-carboxylcytosine (5caC) correlate with active transcription of LINE-1 retroelements during murine spermiogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to create a dependable method for normalizing intracellular levels of 2-hydroxyglutarate (2-HG) in biological samples.
  • The researchers validated this normalization approach by examining previously published data that indicated higher levels of d-2-HG in tumors from colorectal cancer patients compared to normal colon tissue.
  • Using techniques like UPLC and mass spectrometry, the research determined that cancer-free colon tissues had significantly higher levels of both l- and d-2-HG than tumor tissues.
View Article and Find Full Text PDF

Loss-of-function TET2 mutations (TET2) are common in myeloid neoplasia. TET2, a DNA dioxygenase, requires 2-oxoglutarate and Fe(II) to oxidize 5-methylcytosine. TET2 thus result in hypermethylation and transcriptional repression.

View Article and Find Full Text PDF

5-hydroxymethyluracil was originally identified as an oxidatively modified DNA base derivative. Recent evidence suggests that its formation may result from the oxidation of thymine in a reaction that is catalyzed by TET proteins. Alternatively, it could be generated through the deamination of 5-hydroxymethylcytosine by activation-induced cytidine deaminase.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a method to create stable isotope-labeled internal standards needed for accurate DNA modification analysis using mass spectrometry.
  • The synthesis process involves converting [C,N]-2'-deoxythymidine into [C,N]-5-methyl-2'-deoxycytidine and further oxidizing it to form various derivatives.
  • Optimized protocols were also established for oxidizing [C,N]-thymine into several compounds, enhancing the potential for precise quantitative analysis in DNA studies.
View Article and Find Full Text PDF

Our hereby presented methodology is suitable for reliable assessment of the most common DNA modifications which arise as a product of fundamental metabolic processes. 8-oxoguanine, one of the oxidatively modified DNA bases is a typical biomarker of oxidative stress. A noncanonical base, uracil, may also be present in small quantities in DNA.

View Article and Find Full Text PDF

Stable-isotope-dilution tandem mass spectrometry is the most advanced technique used for quantitative determination of a wide spectrum of endogenously generated DNA nucleobase modifications. It is regarded as a gold standard for such analyses. Here, we consider the requirements for reliable identification and quantification of DNA adducts/modifications, whether endogenously derived or not, and discuss how their quantification can provide information on the mechanism of action and the biological relevance of individual nucleobase modifications.

View Article and Find Full Text PDF