Optic nerve (ON) injury causes blindness in adult mammals as their retinal ganglion cells (RGCs) cannot regenerate axons. However, amphibian RGC axons do not experience the same regenerative failure. Studying the regeneration process of the ON in amphibians holds profound implications for regenerative medicine and human health.
View Article and Find Full Text PDFOptic nerve (ON) injury causes blindness in adult mammals as their retinal ganglion cells (RGCs) cannot regenerate axons. However, amphibian RGC axons do not experience the same regenerative failure. Studying the regeneration process of the ON in amphibians holds profound implications for regenerative medicine and human health.
View Article and Find Full Text PDFPreclinical research supports the benefits of pharmaceutical cannabis-based extracts for treating different medical conditions (e.g., epilepsy); however, their neuroprotective potential has not been widely investigated.
View Article and Find Full Text PDFUltrastructural features of striatal white matter and cells in an in vivo model of glutaric acidemia type I created by intracerebral injection of glutaric acid (GA) were analyzed by transmission electron microscopy and immunohistochemistry. To test if the white matter damage observed in this model could be prevented, we administered the synthetic chemopreventive molecule CH38 ((E)-3-(4-methylthiophenyl)-1-phenyl-2-propen-1-one) to newborn rats, previous to an intracerebroventricular injection of GA. The study was done when striatal myelination was incipient and when it was already established (at 12 and 45 days post-injection [DPI], respectively).
View Article and Find Full Text PDFThree dimensional (3D) in vitro neuronal cultures can better reproduce physiologically relevant phenotypes compared to 2D-cultures, because in vivo neurons reside in a 3D microenvironment. Interest in neuronal 3D cultures is emerging, with special attention to the mechanical forces that regulate axon elongation and sprouting in three dimensions. Type I collagen (Col-I) is a native substrate since it is present in the extracellular matrix and hence emulates an in vivo environment to study axon growth.
View Article and Find Full Text PDFThe article title of the original publication contains error for the term "estrogen" was captured twice.
View Article and Find Full Text PDFSympathetic nerves innervate most organs and regulate organ blood flow. Specifically, in the uterus, estradiol (E2) elicits rapid degeneration of sympathetic axons and stimulates the growth of blood vessels. Both physiological remodeling processes, critical for reproduction, have been extensively studied but as independent events and are still not fully understood.
View Article and Find Full Text PDFFluorescent nanoscopy approaches have been used to characterize the periodic organization of actin, spectrin and associated proteins in neuronal axons and dendrites. This membrane-associated periodic skeleton (MPS) is conserved across animals, suggesting it is a fundamental component of neuronal extensions. The nanoscale architecture of the arrangement (190 nm) is below the resolution limit of conventional fluorescent microscopy.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFAxonal degeneration occurs in the developing nervous system for the appropriate establishment of mature circuits, and is also a hallmark of diverse neurodegenerative diseases. Despite recent interest in the field, little is known about the changes (and possible role) of the cytoskeleton during axonal degeneration. We studied the actin cytoskeleton in an in vitro model of developmental pruning induced by trophic factor withdrawal (TFW).
View Article and Find Full Text PDFEndometriosis is a benign estrogen-dependent chronic gynecological disease characterized by the presence of endometrial-like tissue outside the uterine cavity. In both women and experimental endometriotic rats, endometriosis lesions endow autonomic and sensory nerves, which are thought to contribute to the disease-associated pain. Some evidence indicates that the reinnervation of lesions is regulated by factors produced by the endometrial tissue as well as by environmental factors from the peritoneum.
View Article and Find Full Text PDFCurrent evidence indicates that rises in systemic levels of estrogen create in the uterus an inhibitory environment for sympathetic nerves. However, molecular insights of these changes are far from complete. We evaluated if semaphorin 3F mRNA, a sympathetic nerve repellent, was produced by the rat uterus and if its expression was modulated by estrogen.
View Article and Find Full Text PDF