Cs is a long-lived man-made radionuclide introduced in the environment worldwide at the early beginning of the nuclear Era during atmospheric nuclear testing's followed by the civil use of nuclear energy. Atmospheric fallout deposition of this major artificial radionuclide was reconstructed at the scale of French large river basins since 1945, and trajectories in French nuclearized rivers were established using sediment coring. Our results show that Cs contents in sediments of the studied rivers display a large spatial and temporal variability in response to the various anthropogenic pressures exerted on their catchment.
View Article and Find Full Text PDFSediment cores from three major French watersheds (Loire, Meuse and Moselle) have been dated by Cs and Pb from 1910 (Loire), 1947 (Meuse) and 1930 (Moselle) until the present in order to reconstruct trajectories of plastic additive contaminants including nine phthalate esters (PAEs) and seven organophosphate esters (OPEs), measured by gas chromatography-mass spectrometer (GC-MS-MS). Historical levels of ∑PAEs were higher than those of ∑OPEs in the Loire and the Moselle sediments, while ∑PAEs and ∑OPEs contents were of the same order of magnitude in the Meuse sediments. Although increases in concentrations do not evolve linearly, our results clearly indicate an increase in OPEs and PAEs concentrations from the 1950-1970 period onwards, compared with the first half of the 20th century.
View Article and Find Full Text PDFAlthough global plastic distribution is at the heart of 21st century environmental concerns, little information is available concerning how organic plastic additives contaminate freshwater sediments, which are often subject to strong anthropogenic pressure. Here, sediment core samples were collected in the Rhone and the Rhine watersheds (France), dated using Cs and Pb methods and analysed for nine phthalates (PAEs) and seven organophosphate esters (OPEs). The distribution of these organic contaminants was used to establish a chronological archive of plastic additive pollution from 1860 (Rhine) and 1930 (Rhone) until today.
View Article and Find Full Text PDFMany terrestrial ecosystems have undergone profound transformation under the pressure of multiple human stressors. This may have oriented altered ecosystems toward transient or new states. Understanding how these cumulative impacts influence ecosystem functions, services and ecological trajectories is therefore essential to defining effective restoration strategies.
View Article and Find Full Text PDF