Previously we have localized to chromosome 3q21-q24, a predisposition locus for colorectal cancer (CRC), through a genome-wide linkage screen (GWLS) of 69 families without familial adenomatous polyposis or hereditary non-polyposis CRC. To further investigate Mendelian susceptibility to CRC, we extended our screen to include a further GWLS of an additional 34 CRC families. We also searched for a disease gene at 3q21-q24 by linkage disequilibrium mapping in 620 familial CRC cases and 960 controls by genotyping 1676 tagging SNPs and sequencing 30 candidate genes from the region.
View Article and Find Full Text PDFWe report the genetic analysis of a large multi-generational family composed of 144 individuals in which 11 members have been diagnosed with chronic lymphocytic leukaemia (CLL). The observation of a significant over-representation of monoclonal B-cell lymphocytosis (MBL) in unaffected family members strongly supports MBL being a surrogate marker of carrier status. A genome-wide linkage scan of the family using high-density 10K single nucleotide polymorphisms provided no significant evidence for a single gene model of disease susceptibility, inviting speculation that susceptibility to CLL has a more complex basis.
View Article and Find Full Text PDFTo identify genetic variants associated with outcome from chronic lymphocytic leukemia (CLL), we genotyped 977 nonsynonymous single nucleotide polymorphisms (nsSNPs) in 755 genes with relevance to cancer biology in 425 patients participating in a phase 3 trial comparing the efficacy of fludarabine, chlorambucil, and fludarabine with cyclophosphamide as first-line treatment. Selection of nsSNPs was biased toward those likely to be functionally deleterious. SNP genotypes were linked to individual patient outcome data and response to chemotherapy.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) and other B-cell lymphoproliferative disorders display familial aggregation. To identify a susceptibility gene for CLL, we assembled families from the major European (ICLLC) and American (GEC) consortia to conduct a genome-wide linkage analysis of 101 new CLL pedigrees using a high-density single nucleotide polymorphism (SNP) array and combined the results with data from our previously reported analysis of 105 families. Here, we report on the combined analysis of the 206 families.
View Article and Find Full Text PDFTo identify low penetrance susceptibility alleles for colorectal cancer (CRC), we genotyped 1467 non-synonymous SNPs mapping to 871 candidate cancer genes in 2575 cases and 2707 controls. nsSNP selection was biased towards those predicted to be functionally deleterious. One SNP AKAP9 M463I remained significantly associated with CRC risk after stringent adjustment for multiple testing.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
September 2006
Folate intake is inversely related to risk of developing colorectal neoplasia. Associations between risk of colorectal neoplasia and polymorphisms in genes coding for enzymes involved in folate metabolism have also been reported, suggesting a relationship between genotype and development of colorectal neoplasia. To further investigate the effects of folate metabolism genotypes on colorectal neoplasia, we genotyped 546 patients participating in a randomized controlled trial of folate supplementation for the prevention of colorectal adenoma recurrence.
View Article and Find Full Text PDFWe report a family with an unusual form of autosomal dominant spondyloepiphyseal dysplasia characterized by infantile-onset disproportionate short stature with relative shortening of the spine, thoracic kyphosis, lumbar lordosis, scoliosis and premature osteoarthritis of the joints especially of the hips. Radiological findings include mild platyspondyly, vertebral end plate irregularity, irregular femoral necks, and dysplasia of the capital femoral epiphyses with flattening and irregularity present from childhood and mild variable epiphyseal dysplasia elsewhere in the skeleton. Intrafamilial variability is observed in the degree of short stature, severity of spinal and hip involvement and the age of onset of symptoms and complications.
View Article and Find Full Text PDFTo identify a novel susceptibility gene for colorectal cancer (CRC), we conducted a genome-wide linkage analysis of 69 pedigrees segregating colorectal neoplasia in which involvement of known loci had been excluded, using a high-density single nucleotide polymorphism (SNP) array containing 10,204 markers. Multipoint linkage analyses were undertaken using both non-parametric (model-free) and parametric (model-based) methods. After the removal of SNPs in strong linkage disequilibrium, we obtained a maximum non-parametric linkage statistic of 3.
View Article and Find Full Text PDFAttachment to the plasma membrane by linkage to a glycosylphosphatidylinositol (GPI) anchor is a mode of protein expression highly conserved from protozoa to mammals. As a clinical entity, deficiency of GPI has been recognized as paroxysmal nocturnal hemoglobinuria, an acquired clonal disorder associated with somatic mutations of the X-linked PIGA gene in hematopoietic cells. We have identified a novel disease characterized by a propensity to venous thrombosis and seizures in which deficiency of GPI is inherited in an autosomal recessive manner.
View Article and Find Full Text PDFWe conducted a large-scale genome-wide association study in UK Caucasians to identify susceptibility alleles for lung cancer, analyzing 1529 cases and 2707 controls. To increase the likelihood of identifying disease-causing alleles, we genotyped 1476 nonsynonymous single nucleotide polymorphisms (nsSNPs) in 871 candidate cancer genes, biasing SNP selection toward those predicted to be deleterious. Statistically significant associations were identified for 64 nsSNPs, generating a genome-wide significance level of P=0.
View Article and Find Full Text PDFThe role of inherited genetic factors in the etiology of chronic lymphocytic leukemia (CLL) and other B-cell lymphoproliferative disorders (LPDs) is now well established. Significant familial aggregation of CLL and B-cell LPDs has been demonstrated, but the mode of inheritance is unknown. Identifying genes that when mutated confer an increased risk of these diseases is of immediate clinical relevance in terms of primary and secondary interventions.
View Article and Find Full Text PDFARLTS1, a member of the Ras superfamily and putative tumor-suppressor gene resides at chromosome 13q14, a region commonly deleted in hematopoietic and solid tumors. Previously, the truncating single nucleotide polymorphism (SNP) of ARLTS, G446A (W149X) has been reported to act as a multi-site tumor susceptibility allele. To explore the relationship between polymorphic variation in ARTLS1 and risk of chronic lymphocytic leukemia (CLL) we analyzed germline DNA from 413 cases and 471 healthy controls for W149X and five additional coding SNPs, S99S, P131L, L132L, C148R, and E164K.
View Article and Find Full Text PDFWe conducted a large-scale association study to identify low-penetrance susceptibility alleles for chronic lymphocytic leukemia (CLL), analyzing 992 patients and 2707 healthy controls. To increase the likelihood of identifying disease-causing alleles we genotyped 1467 coding nonsynonymous single nucleotide polymorphisms (nsSNPs) in 865 candidate cancer genes, biasing nsSNP selection toward those predicted to be deleterious. Preeminent associations were identified in SNPs mapping to genes pivotal in the DNA damage-response and cell-cycle pathways, including ATM F858L (odds ratio [OR] = 2.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
November 2005
Nonsynonymous single nucleotide polymorphisms (nsSNP) have the potential to affect the structure or function of expressed proteins and are, therefore, likely to represent modifiers of inherited susceptibility. We have classified and catalogued the predicted functionality of nsSNPs in genes relevant to the biology of cancer to facilitate sequence-based association studies. Candidate genes were identified using targeted search terms and pathways to interrogate the Gene Ontology Consortium database, Kyoto Encyclopedia of Genes and Genomes database, Iobion's Interaction Explorer PathwayAssist Program, National Center for Biotechnology Information Entrez Gene database, and CancerGene database.
View Article and Find Full Text PDFOutside the context of hereditary deficiencies of complement and IgA, Mendelian inherited predisposition to small vessel lymphocytic vasculitis (SVLV) has rarely been documented. Here we report a large, multigenerational family segregating symmetrical cutaneous SVLV affecting the cheeks, thighs and hands. In all affected family members the disease presented in early infancy and there was no evidence for an association with systemic disease.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) and other B-cell lymphoproliferative disorders (LPDs) show clear evidence of familial aggregation, but the inherited basis is largely unknown. To identify a susceptibility gene for CLL, we conducted a genomewide linkage analysis of 115 pedigrees, using a high-density single-nucleotide polymorphism (SNP) array containing 11,560 markers. Multipoint linkage analyses were undertaken using both nonparametric (model-free) and parametric (model-based) methods.
View Article and Find Full Text PDFSNPLINK is a Perl script that performs full genome linkage analysis of high-density single nucleotide polymorphism (SNP) marker sets. The presence of linkage disequilibrium (LD) between closely spaced SNP markers can falsely inflate linkage statistics. SNPLINK removes LD from the marker sets in an automated fashion before carrying out linkage analysis.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
December 2004
Folate availability is critical for DNA integrity, required for the transfer of methyl groups in the biosynthesis of thymidilate. Reduction of 5,10-methylenetetrahydrofolate, a donor for methylating dUMP to dTMP in DNA synthesis, to 5-methyltetrahydrofolate, the primary methyl donor for methionine synthesis, is catalyzed by 5,10-methylenetetrahydrofolate reductase (MTHFR). The MTHFR polymorphisms C677T and A1298C have been shown in some studies to alter the risk of a range of different malignancies.
View Article and Find Full Text PDFGenomewide linkage searches aimed at identifying disease susceptibility loci are generally conducted using 300-400 microsatellite markers. Genotyping bi-allelic single nucleotide polymorphisms (SNPs) provides an alternative strategy. The availability of dense SNP maps coupled with recent technological developments in highly paralleled SNP genotyping makes it practical to now consider the use of these markers for whole-genome genetic linkage analyses.
View Article and Find Full Text PDFIndividuals with permanent neonatal diabetes mellitus usually present within the first three months of life and require insulin treatment. We recently identified a locus on chromosome 10p13-p12.1 involved in permanent neonatal diabetes mellitus associated with pancreatic and cerebellar agenesis in a genome-wide linkage search of a consanguineous Pakistani family.
View Article and Find Full Text PDFThe P2X7 receptor, a plasma membrane ATP-gated ion channel that plays a role in lymphocyte apoptosis, has been suggested to be involved in the development of chronic lymphocytic leukemia (CLL). P2X7 is polymorphic with 1513A and 1513C alleles encoding fully active and nonfunctional proteins, respectively. We evaluated the significance of the P2X7-A1513C polymorphism on CLL risk by genotyping 424 patients and 428 healthy controls.
View Article and Find Full Text PDFWe report a genomewide linkage analysis of a large consanguineous family segregating autosomal recessively inherited neonatal diabetes and the identification of a novel neonatal diabetes locus. Neonatal diabetes was characterized by low levels of circulating C-peptide with very low to undetectable levels of insulin in the presence of severe hyperglycemia unresponsive to insulin infusion. A dense genomewide linkage search of the family was undertaken using a first generation 10K single nucleotide polymorphism chip containing 10,044 markers.
View Article and Find Full Text PDF