Purpose: The aim of this study was to assess Candida albicans attachment on conventionally fabricated (polymethylmethacrylate, PMMA), CAD-CAM milled, and 3D-printed acrylic resin bases pre- and post-simulated thermal aging, along with examining material surface changes after aging.
Materials And Methods: Forty-six samples (10 mm × 10 mm × 2 mm) for each of four material groups (conventional heat-polymerized PMMA, CAD-CAM milled acrylic resin base, CAD-CAM 3D-printed methacrylate resin base, CAD-CAM 3D-printed urethane methacrylate resin base) were subjected to 0, 1, or 2 years of simulated thermal aging. Microscopic images were taken before and after aging, and C.