Publications by authors named "Gabriella Tessitore"

Our society is indebted to the numerous inventors and scientists who helped bring about the incredible technological advances in modern society that we all take for granted. The importance of knowing the history of these inventions is often underestimated, although our reliance on technology is escalating. Lanthanide luminescence has paved the way for many of these inventions, from lighting and displays to medical advancements and telecommunications.

View Article and Find Full Text PDF

Glioblastoma multiforme is an aggressive type of brain cancer with high recurrence rates due to the presence of radioresistant cells remaining after tumor resection. Here, we report the development of an X-ray-mediated photodynamic therapy (X-PDT) system using NaLuF:25% Pr radioluminescent nanoparticles in conjunction with protoporphyrin IX (PPIX), an endogenous photosensitizer that accumulates selectively in cancer cells. Conveniently, 5-aminolevulinic acid (5-ALA), the prodrug that is administered for PDT, is the only drug approved for fluorescence-guided resection of glioblastoma, enabling dual detection and treatment of malignant cells.

View Article and Find Full Text PDF

Dye sensitization is a promising route to enhance luminescence from lanthanide-doped upconverting nanoparticles (LnUCNPs) by improving the photon harvesting capability of LnUCNPs through the use of dye molecules, characterized by higher absorption coefficients. The literature does not fully address the poor photostability of NIR dyes, hindering solution-based applications. The improvements achieved by dye-sensitized LnUCNPs are usually obtained by comparison with non-dye sensitized LnUCNPs.

View Article and Find Full Text PDF

Evaluation of particle dynamics at the nano- and microscale poses a challenge to the development of novel velocimetry techniques. Established optical methods implement external or internal calibrations of the emission profiles by varying the particle velocity and are limited to specific experimental conditions. The proposed multiemission particle velocimetry approach aims to introduce a new concept for a luminescent probe, which guarantees accurate velocity measurements at the microscale, independent of the particle concentration or experimental setup, and without need for calibration.

View Article and Find Full Text PDF

Sub-10 nm β-NaGdF:18% Yb,2% Er nanoparticles were synthesized in ethylene glycol and various ionic liquids under microwave heating. The products were characterized by powder X-ray diffraction, electron microscopy, and upconversion (UC) luminescence spectroscopy. After Yb excitation at 970 nm, Er ions are excited by energy transfer upconversion and show the typical green and red emission bands.

View Article and Find Full Text PDF

To maximize the intrinsic luminescence efficiency of the higher energy emissions of Tm in LiYF:Yb,Tm upconverting nanoparticles, we investigated a specific range of Tm dopant concentrations. Reported to be optimized at 25% Yb, 0.5% Tm, due to the multitude of Tm-to-Tm interactions, the Tm concentration commonly used may not be suitable for strong UV and visible emissions.

View Article and Find Full Text PDF

Color-tunable luminescence has been extensively investigated in upconverting nanoparticles for diverse applications, each exploiting emissions in different spectral regions. Manipulation of the emission wavelength is accomplished by varying the composition of the luminescent material or the characteristics of the excitation source. Herein, we propose core-shell β-NaGdF : Tm , Yb /β-NaGdF : Tb nanoparticles as intrinsic time-tunable luminescent materials.

View Article and Find Full Text PDF

The development of reliable and reproducible synthetic routes that produce monodisperse lanthanide-doped upconverting nanoparticles has resulted in an appreciable need to determine the mechanisms which govern upconversion luminescence at the nanoscale. New experimental and theoretical evidence explicates the quenching phenomena involved in the low luminescence efficiencies. A deeper understanding of the role of surfaces and defects in the quenching mechanisms and the properties of upconverting nanoparticles are of fundamental importance to develop nanomaterials with enhanced luminescence properties.

View Article and Find Full Text PDF