Sepsis is a systemic response to infection with life-threatening consequences. Our understanding of the molecular and cellular impact of sepsis across organs remains rudimentary. Here, we characterize the pathogenesis of sepsis by measuring dynamic changes in gene expression across organs.
View Article and Find Full Text PDFPeptides are versatile building blocks for the fabrication of various nanostructures that result in the formation of hydrogels and nanoparticles. Precise chemical functionalization promotes discrete structure formation, causing controlled bioactivity and physical properties for functional materials development. The conjugation of small molecules on amino acid side chains determines their intermolecular interactions in addition to their intrinsic peptide characteristics.
View Article and Find Full Text PDFSepsis is a systemic response to infection with life-threatening consequences. Our understanding of the impact of sepsis across organs of the body is rudimentary. Here, using mouse models of sepsis, we generate a dynamic, organism-wide map of the pathogenesis of the disease, revealing the spatiotemporal patterns of the effects of sepsis across tissues.
View Article and Find Full Text PDFPersister cell formation and biofilms of pathogens are extensively involved in the development of chronic infectious diseases. Eradicating persister cells is challenging, owing to their tolerance to conventional antibiotics, which cannot kill cells in a metabolically dormant state. A high frequency of persisters in biofilms makes inactivating biofilm cells more difficult, because the biofilm matrix inhibits antibiotic penetration.
View Article and Find Full Text PDF