Automation can transform productivity in research activities that use liquid handling, such as organic synthesis, but it has made less impact in materials laboratories, which require sample preparation steps and a range of solid-state characterization techniques. For example, powder X-ray diffraction (PXRD) is a key method in materials and pharmaceutical chemistry, but its end-to-end automation is challenging because it involves solid powder handling and sample processing. Here we present a fully autonomous solid-state workflow for PXRD experiments that can match or even surpass manual data quality, encompassing crystal growth, sample preparation, and automated data capture.
View Article and Find Full Text PDFClosed-loop experiments can accelerate material discovery by automating both experimental manipulations and decisions that have traditionally been made by researchers. Fast and non-invasive measurements are particularly attractive for closed-loop strategies. Viscosity is a physical property for fluids that is important in many applications.
View Article and Find Full Text PDFThe extent to which languages share properties reflecting the non-linguistic constraints of the speakers who speak them is key to the debate regarding the relationship between language and cognition. A critical case is spatial communication, where it has been argued that semantic universals should exist, if anywhere. Here, using an experimental paradigm able to separate variation within a language from variation between languages, we tested the use of spatial demonstratives-the most fundamental and frequent spatial terms across languages.
View Article and Find Full Text PDF