Introduction: Clinical trials (CTs) often fail due to inadequate patient recruitment. Finding eligible patients involves comparing the patient's information with the CT eligibility criteria. Automated patient matching offers the promise of improving the process, yet the main difficulties of CT retrieval lie in the semantic complexity of matching unstructured patient descriptions with semi-structured, multi-field CT documents and in capturing the meaning of negation coming from the eligibility criteria.
View Article and Find Full Text PDFIntroduction: People are today increasingly relying on health information they find online to make decisions that may impact both their physical and mental wellbeing. Therefore, there is a growing need for systems that can assess the truthfulness of such health information. Most of the current literature solutions use machine learning or knowledge-based approaches treating the problem as a binary classification task, discriminating between correct information and misinformation.
View Article and Find Full Text PDFResearch aimed at finding solutions to the problem of the diffusion of distinct forms of non-genuine information online across multiple domains has attracted growing interest in recent years, from opinion spam to fake news detection. Currently, partly due to the COVID-19 virus outbreak and the subsequent proliferation of unfounded claims and highly biased content, attention has focused on developing solutions that can automatically assess the genuineness of health information. Most of these approaches, applied both to Web pages and social media content, rely primarily on the use of handcrafted features in conjunction with Machine Learning.
View Article and Find Full Text PDFIn recent years we have witnessed a growing interest in the analysis of social media data under different perspectives, since these online platforms have become the preferred tool for generating and sharing content across different users organized into virtual communities, based on their common interests, needs, and perceptions. In the current study, by considering a collection of social textual contents related to COVID-19 gathered on the Twitter microblogging platform in the period between August and December 2020, we aimed at evaluating the possible effects of some critical factors related to the pandemic on the mental well-being of the population. In particular, we aimed at investigating potential lexicon identifiers of vulnerability to psychological distress in digital social interactions with respect to distinct COVID-related scenarios, which could be "at risk" from a psychological discomfort point of view.
View Article and Find Full Text PDFSocial media allow to fulfill perceived social needs such as connecting with friends or other individuals with similar interests into virtual communities; they have also become essential as news sources, microblogging platforms, in particular, in a variety of contexts including that of health. However, due to the homophily property and selective exposure to information, social media have the tendency to create distinct groups of individuals whose ideas are highly polarized around certain topics. In these groups, a.
View Article and Find Full Text PDFBackground: The fight against the COVID-19 pandemic seems to encompass a social media debate, possibly resulting in emotional contagion and the need for novel surveillance approaches. In the current study, we aimed to examine the flow and content of tweets, exploring the role of COVID-19 key events on the popular Twitter platform.
Methods: Using representative freely available data, we performed a focused, social media-based analysis to capture COVID-19 discussions on Twitter, considering sentiment and longitudinal trends between January 19 and March 3, 2020.
Binge Drinking (BD) is a common risky behaviour that people hardly report to healthcare professionals, although it is not uncommon to find, instead, personal communications related to alcohol-related behaviors on social media. By following a data-driven approach focusing on User-Generated Content, we aimed to detect potential binge drinkers through the investigation of their language and shared topics. First, we gathered Twitter threads quoting BD and alcohol-related behaviours, by considering unequivocal keywords, identified by experts, from previous evidence on BD.
View Article and Find Full Text PDFThe present work is related to Web intelligence and more precisely to medical information foraging. We present here a novel approach based on agents technology for information foraging. An architecture is proposed, in which we distinguish two important phases.
View Article and Find Full Text PDFWe present in this paper a novel approach based on multi-agent technology for Web information foraging. We proposed for this purpose an architecture in which we distinguish two important phases. The first one is a learning process for localizing the most relevant pages that might interest the user.
View Article and Find Full Text PDF