Publications by authors named "Gabriella Li"

Industrial microbes and bio-derived products have emerged as an integral component of the bioeconomy, with an array of agricultural, bioenergy, and biomedical applications. However, the rapid development of microbial biotechnology raises concerns related to environmental escape of laboratory microbes, detection and tracking thereof, and resultant impact upon native ecosystems. Indeed, though wild-type and genetically modified microbes are actively deployed in industrial bioprocesses, an understanding of microbial interactivity and impact upon the environment is severely lacking.

View Article and Find Full Text PDF

Synergistic and supportive interactions among genes can be incorporated in engineering biology to enhance and stabilize the performance of biological systems, but combinatorial numerical explosion challenges the analysis of multigene interactions. The incorporation of DNA barcodes to mark genes coupled with next-generation sequencing offers a solution to this challenge. We describe improvements for a key method in this space, CombiGEM, to broaden its application to assembling typical gene-sized DNA fragments and to reduce the cost of sequencing for prevalent small-scale projects.

View Article and Find Full Text PDF

Fluorescently labeled proteins absorb and emit light, appearing as Gaussian spots in fluorescence imaging. When fluorescent tags are added to cytoskeletal polymers such as microtubules, a line of fluorescence and even non-linear structures results. While much progress has been made in techniques for imaging and microscopy, image analysis is less well-developed.

View Article and Find Full Text PDF

Fluorescently labeled proteins absorb and emit light, appearing as Gaussian spots in fluorescence imaging. When fluorescent tags are added to cytoskeletal polymers such as microtubules, a line of fluorescence and even non-linear structures results. While much progress has been made in techniques for imaging and microscopy, image analysis is less well developed.

View Article and Find Full Text PDF

Microtubules are dynamic tubulin polymers responsible for many cellular processes, including the capture and segregation of chromosomes during mitosis. In contrast to textbook models of tubulin self-assembly, we have recently demonstrated that microtubules elongate by addition of bent guanosine triphosphate tubulin to the tips of curving protofilaments. Here we explore this mechanism of microtubule growth using Brownian dynamics modeling and electron cryotomography.

View Article and Find Full Text PDF

How temperature specifically affects microtubule dynamics and how these lead to changes in microtubule networks in cells have not been established. We investigated these questions in budding yeast, an organism found in diverse environments and therefore predicted to exhibit dynamic microtubules across a broad temperature range. We measured the dynamics of GFP-labeled microtubules in living cells and found that lowering temperature from 37°C to 10°C decreased the rates of both polymerization and depolymerization, decreased the amount of polymer assembled before catastrophes, and decreased the frequency of microtubule emergence from nucleation sites.

View Article and Find Full Text PDF

Background & Aims: By binding to T cell immunoglobulin mucin-3 (TIM-3) on activated Th1 cells, galectin-9 (Gal-9) negatively regulates Th1-type alloimmunity. Although T cells contribute to hepatic ischemia-reperfusion injury (IRI), it is unknown whether negative T cell-dependent TIM-3 co-stimulation may rescue IR-stressed orthotopic liver transplants from innate immunity-driven inflammation.

Methods: We used wild type (WT) and TIM-3 transgenic (Tg) mice (C57BL/6) as liver donors and recipients in a clinically-relevant model of hepatic cold storage (20 h at 4°C in UW solution) and syngeneic orthotopic liver transplantation (OLT).

View Article and Find Full Text PDF