Humans may play a key role in providing small prey mammals spatial and temporal refuge from predators, but few studies have captured the heterogeneity of these effects across space and time. Global COVID-19 lockdown restrictions offered a unique opportunity to investigate how a sudden change in human presence in a semi-urban park impacted wildlife. Here, we quantify how changes in the spatial distributions of humans and natural predators influenced the landscape of fear for the California ground squirrel (Otospermophilus beecheyi) in a COVID-19 pandemic (2020) and non-COVID (2019) year.
View Article and Find Full Text PDFGroup-living animals sleep together, yet most research treats sleep as an individual process. Here, we argue that social interactions during the sleep period contribute in important, but largely overlooked, ways to animal groups' social dynamics, while patterns of social interaction and the structure of social connections within animal groups play important, but poorly understood, roles in shaping sleep behavior. Leveraging field-appropriate methods, such as direct and video-based observation, and increasingly common on-animal motion sensors (e.
View Article and Find Full Text PDFThe soundscape experienced by animals early in life can affect their behaviour later in life. For birds, sounds experienced in the egg can influence how individuals learn to respond to specific calls post-hatching. However, how early acoustic experiences affect subsequent social behaviour remains unknown.
View Article and Find Full Text PDFIn various animal species conspecifics aggregate at sleeping sites. Such aggregations can act as information centres where individuals acquire up-to-date knowledge about their environment. In some species, communal sleeping sites comprise individuals from multiple groups, where each group maintains stable membership over time.
View Article and Find Full Text PDFGroups of animals inhabit vastly different sensory worlds, or umwelten, which shape fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated into the emerging field of collective behaviour, which studies the movements, population-level behaviours, and emergent properties of animal groups. Here, we review the contributions of sensory ecology and collective behaviour to understanding how animals move and interact within the context of their social and physical environments.
View Article and Find Full Text PDFAnimals that travel together in groups must constantly come to consensus about both the direction and speed of movement, often simultaneously. Contributions to collective decisions may vary among group members, yet inferring who has influence over group decisions is challenging, largely due to the multifaceted nature of influence. Here we collected high-resolution GPS data from five habituated meerkat groups in their natural habitat during foraging and developed a method to quantify individual influence over both group direction and speed.
View Article and Find Full Text PDFBackground: In recent years, there has been an increase of interest in plant behaviour as represented by growth-driven responses. These are generally classified into nastic (internally driven) and tropic (environmentally driven) movements. Nastic movements include circumnutations, a circular movement of plant organs commonly associated with search and exploration, while tropisms refer to the directed growth of plant organs toward or away from environmental stimuli, such as light and gravity.
View Article and Find Full Text PDFThe efficiency of communication between animals is determined by the perception range of signals. With changes in the environment, signal transmission between a sender and a receiver can be influenced both directly, where the signal's propagation quality itself is affected, and indirectly where the senders or receivers' behaviour is impaired, impacting for example the distance between them. Here we investigated how meerkats (Suricata suricatta) in the Kalahari Desert adjust to these challenges in the context of maintaining group cohesion through contact calls.
View Article and Find Full Text PDFTerritoriality and stable home ranges are a common space-use pattern among animals. These ranges provide its inhabitants with important resources and thus favourable territories are associated with an increased fitness. While the role of territory quality and changes of territory ownership have often been investigated, the changes of territorial boundaries have been less studied.
View Article and Find Full Text PDFAnimal societies can be organised in multiple hierarchical tiers [1]. Such multilevel societies, where stable groups move together through the landscape, overlapping and associating preferentially with specific other groups, are thought to represent one of the most complex forms of social structure in vertebrates. For example, hamadryas baboons (Papio hamadryas) live in units consisting of one male and one or several females, or of several solitary males, that group into clans.
View Article and Find Full Text PDFGroup coordination, when 'on the move' or when visibility is low, is a challenge faced by many social living animals. While some animals manage to maintain cohesion solely through visual contact, the mechanism of group cohesion through other modes of communication, a necessity when visual contact is reduced, is not yet understood. Meerkats (), a small, social carnivore, forage as a cohesive group while moving continuously.
View Article and Find Full Text PDFSyphilis is considered as one of the most devastating sexually transmitted diseases in human history. Based on historical records, the "Böse Blattern" (German for "Evil Pocks") spread through Europe after 1495 and shared symptoms with what we know today as syphilis. Many cities took measures to protect their population.
View Article and Find Full Text PDFMultiple approaches exist to model patterns of space use across species, among them resource selection analysis, statistical home-range modelling and mechanistic movement modelling. Mechanistic home-range models combine the benefits of these approaches, describing emergent territorial patterns based on fine-scale individual- or group-movement rules and incorporating interactions with neighbours and the environment. These models have not, to date, been extended to dynamic contexts.
View Article and Find Full Text PDFQuarantine is one possible solution to limit the propagation of an emerging infectious disease. Typically, infected individuals are removed from the population by avoiding physical contact with healthy individuals. A key factor for the success of a quarantine strategy is the carrying capacity of the facility.
View Article and Find Full Text PDF