Publications by authors named "Gabriella Epasto"

Polyether-ether-2-ketone (PEKK) is a high-performance thermoplastic polymer used in various fields, from aerospace to medical applications, due to its exceptional mechanical and thermal properties. Nonetheless, the mechanical behavior of 3D-printed PEKK still deserves to be more thoroughly investigated, especially in view of its production by 3D printing, where mechanical properties measured at different scales are likely to be correlated to one another and to all play a major role in determining biomechanical properties, which include mechanical strength on one side and osteointegration ability on the other side. This work explores the mechanical behavior of 3D-printed PEKK through a multiscale approach, having performed both nanoindentation tests and standard tensile and compression tests, where a detailed view of strain distribution was achieved through Digital Image Correlation (DIC) techniques.

View Article and Find Full Text PDF

Lattice structures have found significant applications in the biomedical field due to their interesting combination of mechanical and biological properties. Among these, functionally graded structures sparked interest because of their potential of varying their mechanical properties throughout the volume, allowing the design of biomedical devices able to match the characteristics of a graded structure like human bone. The aim of this works is the study of the effect of the density grading on the mechanical response and the failure mechanisms of a novel functionally graded lattice structure, namely Triply Arranged Octagonal Rings (TAOR).

View Article and Find Full Text PDF

The progress in additive manufacturing has remarkably increased the application of lattice materials in the biomedical field for the fabrication of scaffolds used as bone substitutes. Ti6Al4V alloy is widely adopted for bone implant application as it combines both biological and mechanical properties. Recent breakthroughs in biomaterials and tissue engineering have allowed the regeneration of massive bone defects, which require external intervention to be bridged.

View Article and Find Full Text PDF

In this research, a new lattice structure based on the octagonal geometry and produced by Additive Manufacturing (AM) technique was proposed. Eight octagons with the same dimensions are combined to each other forming a ring. To obtain an isotropic lattice structure, cubic symmetry was imposed; thus, the unit cell is made of three rings mutually perpendicular, one ring for each principal direction.

View Article and Find Full Text PDF

The lumbar intervertebral devices are widely used in the surgical treatment of lumbar diseases. The subsidence represents a serious clinical issue during the healing process, mainly when the interfaces between the implant and the vertebral bodies are not well designed. The aim of this study is the evaluation of subsidence risk for two different devices.

View Article and Find Full Text PDF

The aim of this study was the analysis of the mechanical behaviour of a partially porous lumbar custom-made cage by means of a subject-specific finite element analysis (FEA). The cage, made of Ti6Al4V ELI alloy, was produced via electron beam melting (EBM) process and surgically implanted in a female subject, 50 years old. The novelty of this study was the customized design of the cage and of its internal structure, which is impossible to obtain with the traditional production techniques.

View Article and Find Full Text PDF

In this article, a subject-specific finite element analysis has been developed to study a clinical case of a surgically misaligned hip prosthesis with an ultrashort stem. It was set out to study the strain energy density pattern, comparing the results obtained with computed tomography images. The authors developed two other numerical models: the first one analyzes the stress and strain distributions in the healthy femur (without prosthesis) and the second one analyzes the same boneimplant biomechanical system of the clinical case but assuming the prosthesis in the proper position.

View Article and Find Full Text PDF