Publications by authors named "Gabriella Cipparrone"

Harnessing chiral optical forces facilitates numerous applications in enantioselective sorting and sensing. To date, significant challenges persist in substantiating the holistic complex theorem of these forces as experimental demonstrations employ common light waves (e.g.

View Article and Find Full Text PDF

Circularly polarized light carries spin angular momentum, so it can exert an optical torque on the polarization-anisotropic particle by the spin momentum transfer. Here, we show that giant positive and negative optical torques on Mie-resonant (gain) particles arise from the emergence of superhybrid modes with magnetic multipoles and electric toroidal moments, excited by linearly polarized beams. Anomalous positive and negative torques on particles (doped with judicious amount of dye molecules) are over 800 and 200 times larger than the ordinary lossy counterparts, respectively.

View Article and Find Full Text PDF

Core-shell architecture enables to impart unique customized properties to microparticles, through the proper selection of composition and aggregation state of the inner and outer materials. Here, the synthesis of microparticles with a chiral dielectric core and a metallic shell of gold nanoparticles is demonstrated. The chiral core is obtained by UV induced polymerization of the self-organized droplets of a cholesteric reactive mesogen in a chloroauric acid aqueous solution.

View Article and Find Full Text PDF

Correction for 'Collective motion of chiral Brownian particles controlled by a circularly-polarized laser beam' by Raúl Josué Hernández et al., Soft Matter, 2020, 16, 7704-7714, DOI: .

View Article and Find Full Text PDF

Photochromic liquid crystalline block copolymers (PLCBCs) are currently playing a significant role as light-responsive materials because of their light controllable features over multiple length scales. Herein, a study of the photoinduced optical anisotropy derived by the combination of orientation phenomena at molecular and supramolecular levels in a novel kind of side-chain PLCBCs with mesogenic phenyl benzoate groups and pyridine units that is hydrogen bonded with azobenzene-containing phenol is reported. Based on the polymeric architectures and composition, the supramolecular configuration self-organizes in different microphases that affect the material response to the external stimuli.

View Article and Find Full Text PDF

We demonstrate the emergence of circular collective motion in a system of spherical light-propelled Brownian particles. Light-propulsion occurs as consequence of the coupling between the chirality of polymeric particles - left (L)- or right (R)-type - and the circularly-polarized light that irradiates them. Irradiation with light that has the same helicity as the particle material leads to a circular cooperative vortical motion between the chiral Brownian particles.

View Article and Find Full Text PDF

Lateral optical forces induced by linearly polarized laser beams have been predicted to deflect dipolar particles with opposite chiralities toward opposite transversal directions. These "chirality-dependent" forces can offer new possibilities for passive all-optical enantioselective sorting of chiral particles, which is essential to the nanoscience and drug industries. However, previous chiral sorting experiments focused on large particles with diameters in the geometrical-optics regime.

View Article and Find Full Text PDF

Microdroplet systems have attracted great interest because of their wide range of applications, easiness in processing and handling, feasibility in developing miniaturized devices with high performances and large flexibility. In this study, a stable emulsion based on different dye-doped chiral liquid crystal droplets has been engineered in order to achieve simultaneous omnidirectional lasing at different wavelengths. To obtain the mixed emulsion of dye doped Bragg onion-type microresonators the twofold action, as a surfactant and a droplet stabilizer, of the polyvinyl alcohol dissolved in water has been exploited.

View Article and Find Full Text PDF

We investigate the dynamics of chiral microparticles in a dual-beam optical trap. The chiral particles have the structure of spherical chiral microresonators, with a reflectance deriving from the supramolecular helicoidal arrangement. Due to the strong asymmetric response of the particles to light with a specific helicity and wavelength, their trapping position and rotational frequency can be controlled by proper combination of the polarization state of the two light beams.

View Article and Find Full Text PDF

We report the characterization of diffractive microlens arrays (MAs) using a polarization holographic approach assisted by a spatial light modulator (SLM), in a nematic liquid crystal (NLC) cell. The MAs were recorded in the photoaligning substrates of the cell and then replicated in the NLC bulk, through the surface interactions. The transparency of the NLC on a wide range of wavelengths and the ability to tune its optical birefringence, through an external voltage, allowed us to create MAs with high efficiency.

View Article and Find Full Text PDF

Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences.

View Article and Find Full Text PDF

We report a viable method to generate complex beams, such as the non-diffracting Bessel and Weber beams, which relies on the encoding of amplitude information, in addition to phase and polarization, using polarization holography. The holograms are recorded in polarization sensitive films by the interference of a reference plane wave with a tailored complex beam, having orthogonal circular polarizations. The high efficiency, the intrinsic achromaticity and the simplicity of use of the polarization holograms make them competitive with respect to existing methods and attractive for several applications.

View Article and Find Full Text PDF

Multifunctional colloidal micro and nano-particles with controlled architectures have very promising properties for applications in bio and nanotechnologies. Here we report on the unique dichotomous dynamical behaviour of chiral spherical microparticles, either fluid or solid, manipulated by polarized optical tweezers. The particles are created using a reactive mesogen mixed with a chiral dopant to form cholesteric liquid crystal droplets in water emulsion.

View Article and Find Full Text PDF

Optical microsystems have become important tools for imaging, optofluidics, and sensor applications. Here we show a versatile method to create microlens arrays (MAs) exploiting spatial-light-modulator-assisted polarization holography, which enables an efficiency of diffraction up to 100%. We demonstrate the large flexibility of the proposed approach by codifying mixed MAs, i.

View Article and Find Full Text PDF

Two-dimensional (2D) polarization patterns are achieved by the interference of two pairs of beams with perpendicular planes of incidence and orthogonal polarizations (i.e. linear or circular).

View Article and Find Full Text PDF

Solid chiral microspheres with unique and multifunctional optical properties are produced from cholesteric liquid crystal-water emulsions using photopolymerization processes. These self-organizing microspheres exhibit different internal configurations of helicoidal structures with radial, conical or cylindrical geometries, depending on the physicochemical characteristics of the precursor liquid crystal emulsion.

View Article and Find Full Text PDF

Polarization grating recording in an amorphous and nonchiral azo copolymer has been investigated. The reported study shows that the amorphous polymeric film undergoes a light-guided inhomogeneous supramolecular modification as a consequence of the illumination with proper polarized light patterns, acquiring new functionalities. Both linear and circular, spatially modulated, photoinduced birefringences occur, attaining their peak values in the linearly and circularly polarized regions of the light pattern, respectively.

View Article and Find Full Text PDF

We propose a simple method to perform real-time measurements of circular dichroism (CD), which suppresses the artifacts introduced by anisotropic samples and nonideal optical elements in conventional spectrometers. A single polarization holographic grating is adopted, whose first orders of diffraction have amplitudes that are proportional to the right and left circular polarization component of the input light. We demonstrate that, exploiting unpolarized white light and the intrinsic spectral selectivity of the grating, the true CD spectrum is evaluated in parallel in the spectral range of interest from the intensities of the two diffraction orders, I(+1) and I(-1).

View Article and Find Full Text PDF

We report a study of the capabilities of an optical tweezer based on polarization gradient. We use a light polarization pattern that is able to simultaneously exert forces and torques in opposite directions depending on the particle's position. It allows to perform oscillatory displacements and control the sense of rotation of several particles inside a uniformly illuminated region.

View Article and Find Full Text PDF

In this study, a novel and simple diffractive spectrographic method for real-time measurements of circular dichroism (CD) is considered from a theoretical and experimental approach. A demonstrator prototype of the CD spectrograph has been developed and its performance has been compared with a commercial phase-modulation CD spectrometer. The main element of the device is a polarization holographic grating, recorded in a thin photosensitive organic film, by two interfering opposite circularly polarized beams.

View Article and Find Full Text PDF

A photopolarimeter based on two different kinds of diffraction gratings (a two-grating photopolarimeter) has been developed for real-time measurements of the four elements of the Stokes vector. The main elements of the device are a pure polarization grating and an ordinary transmission grating, both recorded by means of holographic techniques in thin films of organic materials. The first one consists of a diffraction grating recorded by two interfering opposite circularly polarized beams in a Langmuir-Blodgett film of an azo-compound material.

View Article and Find Full Text PDF

We report beam-coupling measurements of undoped nematic planar cells, for which the surface-induced photorefractive effect (SIPRE) has been confirmed to be due to photoelectric interface activation. We show that the energy transfer strongly depends on experimental geometry. Diffraction efficiency and beam-coupling analyses suggest that the unusual local and (or) nonlocal behavior can be ascribed to an additional in-phase-modulated longitudinal electric field component, unaccountable by standard photorefractivity.

View Article and Find Full Text PDF