Methods of wastewater concentration (electronegative filtration (ENF) versus magnetic bead-based concentration (MBC)) were compared for the analysis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), beta-2 microglobulin, and human-coronavirus OC43. Using ENF as the concentration method, two quantitative Polymerase Chain Reaction (qPCR) analytical methods were also compared: Volcano 2 Generation (V2G)-qPCR and reverse transcriptase (RT)-qPCR measuring three different targets of the virus responsible for the COVID-19 illness (N1, modified N3, and ORF1ab). Correlations between concentration methods were strong and statistically significant for SARS-CoV-2 (r=0.
View Article and Find Full Text PDFThe utility of using severe-acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA for assessing the prevalence of COVID-19 within communities begins with the design of the sample collection program. The objective of this study was to assess the utility of 24-hour composites as representative samples for measuring multiple microbiological targets in wastewater, and whether normalization of SARS-CoV-2 by endogenous targets can be used to decrease hour to hour variability at different watershed scales. Two sets of experiments were conducted, in tandem with the same wastewater, with samples collected at the building, cluster, and community sewershed scales.
View Article and Find Full Text PDF