Mathematical modelling of (re)emerging infectious respiratory diseases among humans poses multiple challenges for modellers, which can arise as a result of limited data and surveillance, uncertainty in the natural history of the disease, as well as public health and individual responses to outbreaks. Here, we propose a COVID-19-inspired health state diagram (HSD) to serve as a foundational framework for conceptualising the modelling process for (re)emerging respiratory diseases, and public health responses, in the early stages of their emergence. The HSD aims to serve as a starting point for reflection on the structure and parameterisation of a transmission model to assess the impact of the (re)emerging disease and the capacity of public health interventions to control transmission.
View Article and Find Full Text PDFBackground: The COVID-19 pandemic underlined the need for pandemic planning but also brought into focus the use of mathematical modelling to support public health decisions. The types of models needed (compartment, agent-based, importation) are described. Best practices regarding biological realism (including the need for multidisciplinary expert advisors to modellers), model complexity, consideration of uncertainty and communications to decision-makers and the public are outlined.
View Article and Find Full Text PDFBackground: Commercial air travel can result in global dispersal of infectious diseases. During the coronavirus disease 2019 (COVID-19) pandemic, many countries implemented border measures, including restrictions on air travel, to reduce the importation risk of COVID-19. In the context of inbound air travel to Canada, this study aimed to: 1) characterize travel trends before and during the pandemic, and 2) statistically assess the association between travel volumes and travel restrictions during the pandemic.
View Article and Find Full Text PDFBackground: Estimating rates of disease importation by travellers is a key activity to assess both the risk to a country from an infectious disease emerging elsewhere in the world and the effectiveness of border measures. We describe a model used to estimate the number of travellers infected with SARS-CoV-2 into Canadian airports in 2021, and assess the impact of pre-departure testing requirements on importation risk.
Methods: A mathematical model estimated the number of essential and non-essential air travellers infected with SARS-CoV-2, with the latter requiring a negative pre-departure test result.
This study illustrates what may have happened, in terms of coronavirus disease 2019 (COVID-19) infections, hospitalizations and deaths in Canada, had public health measures not been used to control the COVID-19 epidemic, and had restrictions been lifted with low levels of vaccination, or no vaccination, of the Canadian population. The timeline of the epidemic in Canada, and the public health interventions used to control the epidemic, are reviewed. Comparisons against outcomes in other countries and counterfactual modelling illustrate the relative success of control of the epidemic in Canada.
View Article and Find Full Text PDFPublic health measures applied exclusively within vulnerable populations have been suggested as an alternative to community-wide interventions to mitigate SARS-CoV-2 transmission. With the population demography and healthcare capacity of Canada as an example, a stochastic age-stratified agent-based model was used to explore the progression of the COVID-19 epidemic under three intervention scenarios (infection-preventing vaccination, illness-preventing vaccination and shielding) in individuals above three age thresholds (greater than or equal to 45, 55 and 65 years) while lifting shutdowns and physical distancing in the community. Compared with a scenario with sustained community-wide measures, all age-stratified intervention scenarios resulted in a substantial epidemic resurgence, with hospital and ICU bed usage exceeding healthcare capacities even at the lowest age threshold.
View Article and Find Full Text PDFAustralia, home to the iconic dingo, is currently free from canine rabies. However northern Australia, including Indigenous communities with large free-roaming domestic dog populations, is at increased risk of rabies incursion from nearby Indonesia. We developed a novel agent-based stochastic spatial rabies spread model to evaluate the potential spread of rabies within the dingo population of the Northern Peninsula Area (NPA) region of northern Australia.
View Article and Find Full Text PDFAustralia is currently free of canine rabies. Spatio-ecological knowledge about dingoes in northern Australia is currently a gap that impedes the application of disease spread models and our understanding of the potential transmission of rabies, in the event of an incursion. We therefore conducted a one-year camera trap survey to monitor a dingo population in equatorial northern Australia.
View Article and Find Full Text PDFObjective: This survey aimed to understand hunting practices involving domestic dogs in remote Indigenous communities in northern Australia and, in the context of disease transmission, describe the domestic-wild dog interface and intercommunity interactions of hunting dogs during hunting activities.
Methods: A cross-sectional survey of 13 hunters from communities of the Northern Peninsula Area (NPA) of Queensland gathered information on demographics of hunters and hunting dogs, hunting practices and past encounters with wild dogs during hunting trips. Social networks that described the connections of hunters between NPA communities from hunting expeditions were developed.
Dingoes and wild-living dogs in Australia, which include feral domestic dogs and dingo-dog hybrids, play a role as reservoirs of disease. In the case of an exotic disease incursion-such as rabies-these reservoirs could be a threat to the health of humans, domestic animals and other wildlife in Australia. Disease spread models are needed to explore this impact and develop mitigation strategies for responding to an incursion.
View Article and Find Full Text PDFLyme disease is emerging in Canada due to geographic range expansion of the tick vector Ixodes scapularis Say. Recent areas of emergence include parts of the southeastern Canadian Prairie region. We developed a map of potential risk areas for future I.
View Article and Find Full Text PDFIn Canada, Francisella tularensis , the zoonotic bacterial agent of tularemia, affects mostly snowshoe hares ( Lepus americanus ), muskrats ( Ondatra zibethicus ), and beavers ( Castor canadensis ). Despite numerous studies, the ecologic cycle and natural reservoirs of F. tularensis are not clearly defined.
View Article and Find Full Text PDFFeral pigeons (Columbia livia) can harbor a range of zoonotic pathogens. A transversal study was undertaken to estimate the prevalence of feral pigeons infected by various pathogens in public areas in Montreal, Quebec. Cloacal swabs from captured birds were cultured for Salmonella spp.
View Article and Find Full Text PDFTick-borne diseases are a growing public health concern as their incidence and range have increased in recent decades. Lyme disease is an emerging infectious disease in Canada due to northward expansion of the geographic range of Ixodes scapularis, the principal tick vector for the Lyme disease agent Borrelia burgdorferi, into central and eastern Canada. In this study the geographical distributions of Ixodid ticks, including I.
View Article and Find Full Text PDF