In this work the effects of the pressure between 1-150 Bar on pulsed laser ablation in liquids (PLAL) during the production of silver nanoparticles (AgNPs) in water was investigated. The produced NPs are the results of two different well-known stages which are the plasma and the bubble evolution occurring until the generated material is released into the solution. The main aim of this work is to show which roles is played by the variation of water pressure on the laser induced plasma and the cavitation bubble dynamics during the NPs formation.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2017
"Naked" gold nanoparticles (AuNPs), synthesized in the absence of any capping agents, prepared by pulsed laser ablation in liquid (PLAL) are stabilized by negative charges. Common explanations for this phenomenon involve the presence of gold oxides and/or the anion adsorption. We have found that AuNP ablated in solutions of acids with very different oxidation power, viz.
View Article and Find Full Text PDFIn this paper, nanoparticle enhanced laser-induced breakdown spectroscopy (NELIBS) was applied to the elemental chemical analysis of microdrops of solutions with analyte concentration at subppm level. The effect on laser ablation of the strong local enhancement of the electromagnetic field allows enhancing the optical emission signal up to more than 1 order of magnitude, enabling LIBS to quantify ppb concentration and notably decreasing the limit of detection (LOD) of the technique. At optimized conditions, it was demonstrated that NELIBS can reach an absolute LOD of few picograms for Pb and 0.
View Article and Find Full Text PDF