Publications by authors named "Gabriele Togliatto"

Background: Liver transplantation (LT) is still limited by organ shortage and post-transplant monitoring issues. While machine perfusion techniques allow for improving organ preservation, biomarkers like donor-derived cell-free DNA (dd-cfDNA) and mitochondrial cfDNA (mt-cfDNA) may provide insights into graft injury and viability pre- and post-LT.

Methods: A prospective observational cohort study was conducted on LT recipients (n = 45) to evaluate dd-cfDNA as a biomarker of graft dysfunction during the first 6 months after LT.

View Article and Find Full Text PDF

Background: Endomyocardial biopsy (EMB) is considered the gold-standard method to diagnose rejection after heart transplantation. However, the many disadvantages and potential complications of this test restrict its routine application, particularly in pediatric patients. Donor-derived cell-free DNA (dd-cfDNA), released by the transplanted heart as result of cellular injury, is emerging as a biomarker of tissue damage involved in ischemia/reperfusion injury and posttransplant rejection.

View Article and Find Full Text PDF

Circulating cell-free DNA (cfDNA) refers to small fragments of DNA molecules released after programmed cell death and necrosis in several body fluids such as blood, saliva, urine, and cerebrospinal fluid. The discovery of cfDNA has revolutionized the field of non-invasive diagnostics in the oncologic field, in prenatal testing, and in organ transplantation. Despite the potential of cfDNA and the solid results published in the recent literature, several challenges remain, represented by a low abundance, a need for highly sensitive assays, and analytical issues.

View Article and Find Full Text PDF

Despite advances in immunosuppression therapy, acute rejection remains the leading cause of graft dysfunction in lung transplant recipients. Donor-derived cell-free DNA is increasingly being considered as a valuable biomarker of acute rejection in several solid organ transplants. We present a technically improved molecular method based on digital PCR that targets the mismatch between the recipient and donor at the locus.

View Article and Find Full Text PDF

Background: Donor-derived cell-free DNA (dd-cfDNA) is considered a reliable marker of organ damage with potential applications in the follow-up of transplant recipients.

Methods: In this work we present an assay based on the donor-recipient HLA-mismatch (human leukocyte antigen) at the HLA-DRB1 locus to monitor rejection by quantifying the percentage of dd-cfDNA using a droplet digital PCR (polymerase chain reaction) technique. A panel of probes targeting the HLA-DRB1 locus and covering >85% genetic variability was validated and used to assess dd-cfDNA levels in a prospective cohort of 19 adult heart transplant recipients (mean age 50.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) derived from mesenchymal stem cells isolated from both bone marrow (BMSCs) and adipose tissue (ADSCs) show potential therapeutic effects. These vesicles often show a similar beneficial effect on tissue regeneration, but in some contexts, they exert different biological properties. To date, a comparison of their molecular cargo that could explain the different biological effect is not available.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are implicated in the crosstalk between adipocytes and other metabolic organs, and an altered biological cargo has been observed in EVs from human obese adipose tissue (AT). Yet, the role of adipocyte-derived EVs in pancreatic β cells remains to be determined. Here, we explored the effects of EVs released from adipocytes isolated from both rodents and humans and human AT explants on survival and function of pancreatic β cells and human pancreatic islets.

View Article and Find Full Text PDF

Background: A considerable minority of patients on waiting lists for kidney transplantation either have no diagnosis (and fall into the subset of undiagnosed cases) because kidney biopsy was not performed or histological findings were non-specific, or do not fall into any well-defined clinical category. Some of these patients might be affected by a previously unrecognised monogenic disease.

Methods: Through a multidisciplinary cooperative effort, we built an analytical pipeline to identify patients with chronic kidney disease (CKD) with a clinical suspicion of a monogenic condition or without a well-defined diagnosis.

View Article and Find Full Text PDF

Objectives: Critical hindlimb ischemia is a severe consequence of peripheral artery disease. Surgical treatment does not prevent skeletal muscle impairment or improve long-term patient outcomes. The present study investigates the protective/regenerative potential and the mechanism of action of adipose stem cell-derived extracellular vesicles (ASC-EVs) in a mouse model of hindlimb ischemia.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) possess pro-regenerative potential in different animal models with renal injury. EVs contain different molecules, including proteins, lipids and nucleic acids. Among the shuttled molecules, miRNAs have a relevant role in the pro-regenerative effects of EVs and are a promising target for therapeutic interventions.

View Article and Find Full Text PDF

Endothelial cell-derived extracellular vesicles (CD31EVs) constitute a new entity for therapeutic/prognostic purposes. The roles of CD31EVs as mediators of vascular smooth muscle cell (VSMC) dysfunction in type 2 diabetes (T2D) are investigated herein. We demonstrated that, unlike serum-derived extracellular vesicles in individuals without diabetes, those in individuals with diabetes (D CD31EVs) boosted apoptosis resistance of VSMCs cultured in hyperglycemic condition.

View Article and Find Full Text PDF

Ischemia/reperfusion (I/R) injury is a common cause of liver dysfunction during hepatectomy, liver transplantation procedures and in generalized shock. Although effort has been dedicated to rescuing tissue damage in these clinical settings, there is still an urgent need for an effective treatment to protect the liver from the burden of I/R injury. In this study, we have investigated the potential clinical impact of unacylated-ghrelin (UnAG) in a liver I/R rat model.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of increasing SIRT-1 expression on histone acetylation (H3K56ac) in patients with type 2 diabetes mellitus (T2DM) through a 6-month trial using resveratrol (40 mg or 500 mg) compared to a placebo.
  • Results showed that SIRT-1 levels significantly increased in patients taking 500 mg of resveratrol, leading to notable reductions in H3K56ac and body fat percentage, particularly in those with the highest SIRT-1 increase.
  • The findings suggest that enhancing SIRT-1 expression could improve antioxidant markers and support metabolic health in T2DM patients, indicating a potential therapeutic approach.
View Article and Find Full Text PDF

Empagliflozin (EMPA), a drug approved for type 2 diabetes management, reduced cardiovascular death but is unknown if it reduces myocardial infarction. We sought to investigate: (i) the effect of EMPA on myocardial function and infarct size after ischemia/reperfusion in mice fed with western diet (WD), (ii) the underlying signaling pathways, (iii) its effects on cell survival in rat embryonic-heart-derived cardiomyoblasts (H9C2) and endothelial cells (ECs). To facilitate the aforementioned aims, mice were initially randomized in Control and EMPA groups and were subjected to 30 min ischemia and 2 h reperfusion.

View Article and Find Full Text PDF

The proangiogenic cytokine Interleukin-3 (IL-3) is released by inflammatory cells in breast and ovarian cancer tissue microenvironments and also acts as an autocrine factor for human breast and kidney tumor-derived endothelial cells (TECs). We have previously shown that IL-3-treated endothelial cells (ECs) release extracellular vesicles (EVs), which serve as a paracrine mechanism for neighboring ECs, by transferring active molecules. The impact of an anti-IL-3R-alpha blocking antibody on the proangiogenic effect of EVs released from TECs (anti-IL-3R-EVs) has therefore been investigated in this study.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) act as signaling molecules that control physiological processes, including cell adaptation to stress. Redox signaling via ROS has quite recently become the focus of much attention in numerous pathological contexts, including neurodegenerative diseases, kidney and cardiovascular disease. Imbalance in ROS formation and degradation has also been implicated in essential hypertension.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) that are derived from stem cells are proving to be promising therapeutic options. We herein investigate the therapeutic potential of EVs that have been derived from different stem cell sources, bone-marrow (MSC) and human liver (HLSC), on mesangial cells (MCs) exposed to hyperglycaemia. By expressing a dominant negative STAT5 construct (ΔNSTAT5) in HG-cultured MCs, we have demonstrated that miR-21 expression is under the control of STAT5, which translates into Transforming Growth Factor beta (TGFβ) expression and collagen production.

View Article and Find Full Text PDF

Soluble factors and cell-derived extracellular vesicles (EVs) control vascular cell fate during inflammation. The present study investigates the impact of Interleukin 3 (IL-3) on EV release by endothelial cells (ECs), the mechanisms involved in EV release and paracrine actions. We found that IL-3 increases EV release, which is prevented by IL-3Ralpha blockade.

View Article and Find Full Text PDF

Vascular complications are major causes of morbidity and mortality in type 2 diabetes patients. Mitochondrial reactive oxygen species (ROS) generation and a lack of efficient antioxidant machinery, a result of hyperglycaemia, mainly contribute to this problem. Although advances in therapy have significantly reduced both morbidity and mortality in diabetic individuals, diabetes-associated vascular complications are still one of the most challenging health problems worldwide.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are crucial in long-term diabetes complications, including peripheral artery disease (PAD). In this study, we have investigated the potential clinical impact of unacylated ghrelin (UnAG) in a glucose intolerance and PAD mouse model. We demonstrate that UnAG is able to protect skeletal muscle and endothelial cells (ECs) from ROS imbalance in hind limb ischemia-subjected ob/ob mice.

View Article and Find Full Text PDF
Article Synopsis
  • α6β4 integrin is linked to tumor progression in breast cancer, particularly in luminal invasive carcinomas (Lum-ICs), and its expression is inversely related to miR-221/222 levels.
  • High-grade breast tumors typically show elevated β4 integrin and low miR-221/222 expression, suggesting a regulatory role for these miRNAs in cancer cell behavior.
  • Research indicates that overexpressing miR-221/222 can downregulate β4 integrin, inhibit breast cancer cell proliferation and invasion, and offers potential therapeutic strategies against aggressive breast cancer subtypes.
View Article and Find Full Text PDF

Background: Surgical treatment of peripheral artery disease, even if successful, does not prevent reoccurrence. Under these conditions, increased oxidative stress is a crucial determinant of tissue damage. Given its reported antioxidant effects, we investigated the potential of unacylated-ghrelin (UnAG) to reduce ischemia-induced tissue damage in a mouse model of peripheral artery disease.

View Article and Find Full Text PDF

A functional c-Kit/Kit ligand (KitL) signalling network is required for tumour angiogenesis and growth, and therefore the c-Kit/KitL system might well be a suitable target for the cancer immunotherapy approach. We herein describe a strategy that targets membrane-bound KitL (mbKitL) via DNA vaccination. The vaccination procedure generated antibodies which are able to detect mbKitL on human tumour endothelial cells (TECs) and on the breast cancer cell line: TSA.

View Article and Find Full Text PDF

Metabolic profiling of plasma nonesterified fatty acids discovered that palmitic acid (PA), a natural peroxisome proliferator-activated receptor γ (PPARγ) ligand, is a reliable type 2 diabetes biomarker. We investigated whether and how PA diabetic (d-PA) concentrations affected endothelial progenitor cell (EPC) and bone marrow-derived hematopoietic cell (BM-HC) biology. PA physiologic (n-PA) and d-PA concentrations were used.

View Article and Find Full Text PDF