Background: Women with a history of gestational diabetes mellitus (GDM) have a 7-fold higher risk of developing type 2 diabetes (T2D) during midlife and an elevated risk of developing hypertension and cardiovascular disease. Glucose tolerance reclassification after delivery is recommended, but fewer than 40% of women with GDM are tested. Thus, improved risk stratification methods are needed, as is a deeper understanding of the pathology underlying the transition from GDM to T2D.
View Article and Find Full Text PDFObesity, type 2 diabetes, and other metabolic disorders have a large impact on global health, especially in Western countries. An important hallmark of metabolic disorders is chronic low-grade inflammation. A key player in chronic low-grade inflammation is dysmetabolism, which is defined as the inability to keep homeostasis resulting in loss of lipid control, oxidative stress, inflammation, and insulin resistance.
View Article and Find Full Text PDFMethyl cytosine binding protein 2 (MeCP2) is a structural chromosomal protein involved in the regulation of gene expression. Mutations in the gene encoding MeCP2 result in Rett Syndrome (RTT), a pervasive neurodevelopmental disorder. RTT is one of few autism spectrum disorders whose cause was identified as a single gene mutation.
View Article and Find Full Text PDFAlthough insulin resistance (IR) is a key pathophysiologic condition underlying various metabolic disorders, impaired cellular glucose uptake is one of many manifestations of metabolic derangements in the human body. To study the systems-wide molecular changes associated with obesity-dependent IR, we integrated information on plasma proteins and microRNAs in eight obese insulin-resistant (OIR, HOMA-IR > 2.5) and nine lean insulin-sensitive (LIS, HOMA-IR < 1.
View Article and Find Full Text PDFMammalian genomes are well established, and highly conserved regions within odorant receptors that are unique from other G-protein coupled receptors have been identified. Numerous functional studies have focused on specific conserved amino acids motifs; however, not all conserved motifs have been sufficiently characterized. Here, we identified a highly conserved 18 amino acid sequence motif within transmembrane domain seven (CAS-TM7) which was identified by aligning odorant receptor sequences.
View Article and Find Full Text PDFCyclic AMP (cAMP) and protein kinase A (PKA), classical examples of spatially compartmentalized signaling molecules, are critical axon determinants that regulate neuronal polarity and axon formation, yet little is known about micro-compartmentalization of cAMP and PKA signaling and its role in developing neurons. Here, we revealed that cAMP forms a gradient in developing hippocampal neurons, with higher cAMP levels in more distal regions of the axon compared to other regions of the cell. Interestingly, this cAMP gradient changed according to the developmental stage and depended on proper anchoring of PKA by A-kinase anchoring proteins (AKAPs).
View Article and Find Full Text PDFSialyltransferases are a family of 20 gene products in mice and humans that transfer sialic acid from its activated precursor, CMP-sialic acid, to the terminus of glycoprotein and glycolipid acceptors. ST3Gal-II (coded by the St3gal2 gene) transfers sialic acid preferentially to the three positions of galactose on the Galβ1-3GalNAc terminus of gangliosides GM1 and GD1b to synthesize GD1a and GT1b, respectively. Mice with a targeted disruption of St3gal2 unexpectedly displayed late-onset obesity and insulin resistance.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2016
The regulation of food intake is important for body energy homeostasis. Hypothalamic insulin signaling decreases food intake by upregulating the expression of anorexigenic neuropeptides and downregulating the expression of orexigenic neuropeptides. INS-2, a Mn(2+) chelate of 4-O-(2-amino-2-deoxy-β-D-galactopyranosyl)-3-O-methyl-D-chiro-inositol, acts as an insulin mimetic and sensitizer.
View Article and Find Full Text PDFOlfactory stimulation activates multiple signaling cascades in order to mediate activity-driven changes in gene expression that promote neuronal survival. To date, the mechanisms involved in activity-dependent olfactory neuronal survival have yet to be fully elucidated. In the current study, we observed that olfactory sensory stimulation, which caused neuronal activation, promoted activation of the phosphatidylinositol 3'-kinase (PI3K)/Akt pathway and the expression of Bcl-2, which were responsible for olfactory receptor neuron (ORN) survival.
View Article and Find Full Text PDFOlfactory sensory neurons (OSNs) are the initial site for olfactory signal transduction. Therefore, their survival is essential to olfactory function. In the current study, we demonstrated that while odorant stimulation promoted rodent OSN survival, it induced generation of reactive oxygen species in a dose- and time-dependent manner as well as loss of membrane potential and fragmentation of mitochondria.
View Article and Find Full Text PDF5'-Adenosine monophosphate-activated protein kinase (AMPK) is a master metabolic regulator that has been shown to inhibit the establishment of neuronal polarity/axogenesis under energy stress conditions, whereas brain-specific kinase (BRSK) promotes the establishment of axon-dendrite polarity and synaptic development. However, little information exists regarding the localized activity and regulation of these kinases in developing neurons. In this study, using a fluorescence resonance energy transfer (FRET)-based activity reporter that responds to both AMPK and BRSK, we found that BRSK activity is elevated in the distal region of axons in polarized hippocampal neurons before any stimulation and does not respond to either Ca(2+) or 2-deoxyglucose (2-DG) stimulation.
View Article and Find Full Text PDFModification of hypothalamic fatty acid (FA) metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO) from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1) and fatty acid oxidation (FAOx), exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT) inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate.
View Article and Find Full Text PDFEndocrinol Metab (Seoul)
September 2014
Background: Reperfusion in ischemia is believed to generate cytotoxic oxidative stress, which mediates reperfusion injury. These stress conditions can initiate lipid peroxidation and damage to proteins, as well as promote DNA strand breaks. As biliverdin and bilirubin produced by heme oxygenase isoform 1 (HO-1) have antioxidant properties, the production of both antioxidants by HO-1 may help increase the resistance of the ischemic brain to oxidative stress.
View Article and Find Full Text PDFRett syndrome (RTT) is an autism spectrum disorder (ASD) caused by mutations in the X-linked MECP2 gene that encodes methyl-CpG binding protein 2 (MeCP2). Symptoms range in severity and include psychomotor disabilities, seizures, ataxia, and intellectual disability. Symptom onset is between 6-18 months of age, a critical period of brain development that is highly energy-dependent.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2014
Osteoporosis and osteonecrosis are associated with corticosteroid treatment, but the pathophysiologies are unclear. We hypothesized that mature adipocytes present within the bone marrow compartment play a key role in the development of both diseases. Adipocytes have recognized regulatory effects on bone viability and healing by releasing signaling molecules called adipokines.
View Article and Find Full Text PDFMethyl CpG binding protein 2 (MeCP2) is a structural chromosomal protein involved in the regulation of gene expression. Alterations in the levels of MeCP2 have been related to neurodevelopmental disorders. Studies in mouse models of MeCP2 deficiency have demonstrated that this protein is important for neuronal maturation, neurite complexity, synaptogenesis, and synaptic plasticity.
View Article and Find Full Text PDFCTRP4 is a unique member of the C1q family, possessing two tandem globular C1q domains. Its physiological function is poorly defined. Here, we show that CTRP4 is an evolutionarily conserved, ∼34-kDa secretory protein expressed in the brain.
View Article and Find Full Text PDFDiabesity has become a popular term to describe the specific form of diabetes that develops late in life and is associated with obesity. While there is a correlation between diabetes and obesity, the association is not universally predictive. Defining the metabolic characteristics of obesity that lead to diabetes, and how obese individuals who develop diabetes different from those who do not, are important goals.
View Article and Find Full Text PDF5'-adenosine monophosphate-activated protein kinase (AMPK) is an evolutionarily conserved cellular and organismal energy integrator that responds to numerous stimuli with the overall intention to facilitate energy conservation and enhance energy balance while also affecting cellular survival and behaviors. AMPK has been appreciated for many years to function in peripheral organs that contribute to the generation or disposition of cellular energy, while its role in the brain has been only recently elucidated. While acknowledged to respond to organismal energy balance, we now recognize that energy balance within neurons also affects the brain's response to these peripheral signals.
View Article and Find Full Text PDFAn artificial nose was developed to mimic aspects of sensory transduction of the peripheral mammalian olfactory system. We directly cultured and differentiated rat olfactory sensory neurons (OSNs) on indium-tin oxide electrodes of planar triode substrates without a coupling agent. Direct voltage (~50 μV) and current (~250 nA) signals were measured simultaneously when OSNs on the planar triode substrates were exposed to odorant mixtures.
View Article and Find Full Text PDFIn vitro models are important tools for studying the mechanisms that govern neuronal responses to injury. Most neuronal culture methods employ nonphysiological conditions with regard to metabolic parameters. Standard neuronal cell culture is performed at ambient (21%) oxygen levels, whereas actual tissue oxygen levels in the mammalian brain range from 1% to 5%.
View Article and Find Full Text PDFStorage of excess calories as triglycerides is central to obesity and its associated disorders. Glycerol-3-phosphate acyltransferases (GPATs) catalyze the initial step in acylglyceride syntheses, including triglyceride synthesis. We utilized a novel small-molecule GPAT inhibitor, FSG67, to investigate metabolic consequences of systemic pharmacological GPAT inhibition in lean and diet-induced obese (DIO) mice.
View Article and Find Full Text PDFRett syndrome (RTT) is an autism spectrum disorder that results from mutations in the transcriptional regulator methyl-CpG binding protein 2 (MECP2). In the present work, we demonstrate that MeCP2 deficiency disrupts the establishment of neural connections before synaptogenesis. Using both in vitro and in vivo approaches, we identify dynamic alterations in the expression of class 3 semaphorins that are accompanied by defects in axonal fasciculation, guidance, and targeting with MeCP2 deficiency.
View Article and Find Full Text PDFAdenosine monophosphate-activated protein kinase (AMPK) senses metabolic stress and integrates diverse physiological signals to restore energy balance. Multiple functions are indicated for AMPK in the CNS. While all neurons sense their own energy status, some integrate neuro-humoral signals to assess organismal energy balance.
View Article and Find Full Text PDFLeukemia inhibitory factor (LIF), a neuropoietic cytokine, has been implicated in the control of neuronal development. We previously reported that LIF plays a critical role in regulating the terminal differentiation of olfactory sensory neurons (OSNs). Here, we demonstrate that LIF plays a complementary role in supporting the survival of immature OSNs.
View Article and Find Full Text PDF