The neonatal Fc receptor (FcRn) has been demonstrated to contribute to a high bioavailability of monoclonal antibodies (mAbs). In this study, we explored the cellular sites of FcRn-mediated protection after subcutaneous (SC) and intravenous (IV) administration. SC absorption and IV disposition kinetics of a mAb were studied in hFcRn transgenic (Tg) bone marrow chimeric mice in which hFcRn was restricted to radioresistant cells or hematopoietic cells.
View Article and Find Full Text PDFTherapeutic monoclonal antibodies are widely recognized to be a most promising means to treat an increasing number of human diseases, including cancers and autoimmunity. To a large extent, the efficacy of monoclonal antibody treatment is because IgG antibodies have greatly extended persistence in vivo. However, conventional rodent models do not mirror human antibody pharmacokinetics.
View Article and Find Full Text PDFSerum albumin is the major determinant of blood colloidal osmotic pressure acting as a depot and distributor of compounds including drugs. In humans, serum albumin exhibits an unusually long half-life mainly due to protection from catabolism by neonatal Fc receptor (FcRn)-mediated recycling. These properties make albumin an attractive courier of therapeutically-active compounds.
View Article and Find Full Text PDFThe use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies.
View Article and Find Full Text PDFA key element for the successful development of novel therapeutic antibodies is to fully understand their pharmacokinetic and pharmacodynamic behavior before performing clinical trials. While many in vitro modeling approaches exist, these simply cannot substitute for data obtained from appropriate animal models. It was established quite early that the unusual long serum half-life of immunoglobulin G's (IgGs) and Fc domains are due to their rescue and recycling by the neonatal Fc receptor (FcRn).
View Article and Find Full Text PDFThe 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences, and the 2012 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 3-6, 2012 in San Diego, CA. The meeting drew over 800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a prelude to the main events, a pre-conference workshop held on December 2, 2012 focused on intellectual property issues that impact antibody engineering.
View Article and Find Full Text PDFIn the last few decades, several new methods have been established to isolate full antibodies and fragments thereof, some even using alternative scaffolds from in vivo and in vitro sources. These methods encompass robust techniques including immunization and hybridoma technology or phage display and also more laborious and novel approaches including ribosome display or B-cell immortalization. All methodologies are dependent upon proper antigen presentation for isolation, screening, and further characterization of the selected binding molecules.
View Article and Find Full Text PDFThe MHC class I-like Fc receptor (FcRn) is an intracellular trafficking Fc receptor that is uniquely responsible for the extended serum half-life of antibodies of the IgG subclass and their ability to transport across cellular barriers. By performing these functions, FcRn affects numerous facets of antibody biology and pathobiology. Its critical role in controlling IgG pharmacokinetics has been leveraged for the design of therapeutic antibodies and related biologics.
View Article and Find Full Text PDFMice genetically engineered to express human FcRn are valuable models for the evaluation of therapeutic antibodies in the context of human FcRn in vivo. However, only limited clinical chemistry information on these mouse strains is available. Thus, we have compared 30 clinical chemical parameters of C57BL/6J wild-type mice, murine FcRn-knockout mice, and two human FcRn transgenic mouse strains expressing human FcRn in the absence of murine FcRn.
View Article and Find Full Text PDFThe concept of novel binding proteins as an alternative to antibodies has undergone rapid development and is now ready for practical use in a wide range of applications. Alternative binding proteins, based on suitable scaffolds with desirable properties, are selected from combinatorial libraries in vitro. Here, we describe an approach using a beta-sheet of human gamma-B-crystallin to generate a universal binding site through randomization of eight solvent-exposed amino acid residues selected according to structural and sequence analyses.
View Article and Find Full Text PDF