Publications by authors named "Gabriele Meder"

We present a novel homogeneous in vitro assay format and apply it to the quantitative determination of the enzymatic activity of a tyrosine kinase. The assay employs a short peptidic substrate containing a single tyrosine and a single probe attached via a cysteine side chain. The structural flexibility of the peptide allows for the dynamic quenching of the probe by the nonphosphorylated tyrosine side chain.

View Article and Find Full Text PDF

Neurodegenerative diseases pose one of the most pressing unmet medical needs today. It has long been recognized that caspase-6 may play a role in several neurodegenerative diseases for which there are currently no disease-modifying therapies. Thus it is a potential target for neurodegenerative drug development.

View Article and Find Full Text PDF

Fluorescence lifetime is an intrinsic parameter describing the fluorescence process. Changes in the fluorophore's physicochemical environment can lead to changes in the fluorescence lifetime. When used as the readout in biological assays, it is thought to deliver superior results to conventional optical readouts.

View Article and Find Full Text PDF

The dynamic modification of proteins with ubiquitin is a key regulation paradigm in eukaryotic cells that controls stability, localization, and function of the vast majority of intracellular proteins. Here we describe a robust fluorescence intensity assay for monitoring the enzymatic activity of deubiquitinating proteases, which reverse ubiquitin modifications and comprise over 100 members in humans. The assay was developed for the catalytic domain of human ubiquitin-specific protease 2 (USP2) and human ubiquitin carboxyterminal hydrolase L3 (UCH-L3), and makes use of the novel substrate ubiquitin-rhodamine110-glycine.

View Article and Find Full Text PDF

This article discusses the development of homogeneous, miniaturized assays for the identification of novel kinase inhibitors from very large compound collections. In particular, the suitability of time-resolved fluorescence resonance energy transfer (TR-RET) based on phospho-specific antibodies, an antibody-independent fluorescence polarization (FP) approach using metal-coated beads (IMAP technology), and the determination of adenosine triphosphate consumption through chemiluminescence is evaluated. These readouts are compared with regard to assay sensitivity, compound interference, reagent consumption, and performance in a 1536-well format, and practical considerations for their application in primary screening or in the identification of kinase substrates are discussed.

View Article and Find Full Text PDF