Over the past 20 years, ruthenium(II)-based dyes have played a pivotal role in turning dye-sensitized solar cells (DSCs) into a mature technology for the third generation of photovoltaics. However, the classic I3(-)/I(-) redox couple limits the performance and application of this technique. Simply replacing the iodine-based redox couple by new types like cobalt(3+/2+) complexes was not successful because of the poor compatibility between the ruthenium(II) sensitizer and the cobalt redox species.
View Article and Find Full Text PDFThe cobalt cubium Co4O4(OAc)4(py)4(ClO4) (1A(+)) containing the mixed valence [Co4O4](5+) core is shown by multiple spectroscopic methods to react with hydroxide (OH(-)) but not with water molecules to produce O2. The yield of reaction products is stoichiometric (>99.5%): 41A(+) + 4OH(-) → O2 + 2H2O + 41A.
View Article and Find Full Text PDFThe synthesis of two new thiocyanate free Ru(II) complexes with different pyrid-2-yl tetrazolate ligands is reported, along with their electrochemical, spectroscopic and theoretical characterization. The corresponding dye-sensitized solar cell devices were prepared, leading to 3.4% conversion efficiency, promising data, considering the simplicity of the ligands and the high chemical stability of the complexes.
View Article and Find Full Text PDFSix new heteroleptic Ru(II) complexes (MC118, MC120-123 and MC126), of general formula Ru(L1)(L2)(NCS)2, where L1 and L2 are respectively dicarboxylated and π-conjugated functionalized (dissymmetric) bipyridine ligands, were designed, synthesized and applied as sensitizers in dye-sensitized solar cells. These complexes were characterized both experimentally and theoretically, showing promising optical properties, with higher extinction coefficients compared to the prototypical N719 dye. When employed in working devices, in combination with a liquid I(-)/I3(-) redox electrolyte, the investigated sensitizers have shown power conversion efficiencies between 6.
View Article and Find Full Text PDFChemphyschem
April 2014
We report a joint experimental and computational study into the spectroscopic properties of a prototypical D5 organic dye, both in solution and adsorbed on a TiO2 surface, with the aim of modeling and quantifying the UV/Vis spectral shifts that occur in the different explored environments. Going from the dye in solution to dye-sensitized TiO2, various factors may shift the position of the UV/Vis absorption maximum, both towards longer and shorter wavelengths. Here we have focused on the effect of dye aggregation on TiO2, surface protonation, and solvent effects.
View Article and Find Full Text PDFA new Ru(II) dye, Ru(L1)(L2) (NCS)2, L1 = (4-(5-hexylthiophen-2-yl)-4'(4-carboxyl-phenyl 2,2'-bipyridine) and L2 = (4-4'-dicarboxy-2,2'-bipyridine), labelled MC112, based on a dissymmetric bipyridine ligand for improved interfacial and optical properties, was synthesized and used in DSCs, yielding photovoltaic efficiencies of 7.6% under standard AM 1.5 sunlight and an excellent device stability.
View Article and Find Full Text PDFWe report a joint experimental and computational work on new organic donor-acceptor dye sensitizers in which a carbazole (CZ) and a phenothiazine (PTZ) units are linked together by an alkyl C6H13, while two different anchoring groups are employed: the cyanoacrylic acid (CS1A, CSORG1) and the rhodanine-3-acetic acid (CS4A, CSORG4). The CZ moiety has multiple roles of (i) acting as an extra-electron donor portion, providing more electron density on the PTZ; (ii) suppressing the back-electron transfer from TiO2 to the electrolyte by forming a compact insulating dye layer; (iii) modulating dye aggregation on the semiconductor surface; and (iv) acting as an antenna, collecting photons and, through long-range energy transfer, redirecting the captured energy to the dye sensitizer. We show that the introduction of the CZ donor remarkably enhances the photovoltaic performances of the rhodanine-based dye, compared to the corresponding simple PTZ dye, with more than a two-fold increase in the overall efficiencies, while it does not bring beneficial effects in the case of the cyanoacrylic-based sensitizer.
View Article and Find Full Text PDF