Publications by authors named "Gabriele L Capone"

The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions.

View Article and Find Full Text PDF

Purpose: To describe a snapshot of international genetic testing practices, specifically regarding the use of multigene panels, for hereditary breast/ovarian cancers. We conducted a survey through the Evidence-Based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium, covering questions about 16 non-/ genes.

Methods: Data were collected via in-person and paper/electronic surveys.

View Article and Find Full Text PDF

In sporadic schwannomas, inactivation of both copies of the NF2 tumor suppressor gene on 22q is common. Constitutional mutations of SMARCB1 are responsible of schwannomatosis, an inherited tumor predisposition syndrome, characterized by the development of multiple schwannomas. We analysed the frequency of copy number changes on chromosome 22 and the mutation of NF2 and SMARCB1 in 26 sporadic schwannomas.

View Article and Find Full Text PDF

The efficiency of a novel targeted next-generation sequencing (NGS) test, the Devyser BRCA kit, for a comprehensive analysis of all 48 coding exons of the high-risk breast/ovarian cancer susceptibility genes BRCA1 and BRCA2 has been assessed. The new assay intended to detect nucleotide substitutions, small deletions/insertions, and large deletions/duplications. To document the false-negative and false-positive rates of the NGS assay in the hands of end users, 48 samples with previously identified 444 small variants and seven gross rearrangements were analyzed, showing 100% concordance with gold standards.

View Article and Find Full Text PDF

Background: The INI1/SMARCB1 gene protein product has been implicated in the direct pathogenesis of schwannomas from patients with one form of schwannomatosis [SWNTS1; MIM # 162091] showing a mosaic pattern of loss of protein expression by immunohistochemistry [93% in familial vs. 55% in sporadic cases].

Aim Of Study: To verify whether such INI1/SMARCB1 mosaic pattern could be extended to all schwannomas arising in the sporadic and familial schwannomatoses [i.

View Article and Find Full Text PDF

Numerous genetic factors that influence breast cancer risk are known. However, approximately two-thirds of the overall familial risk remain unexplained. To determine whether some of the missing heritability is due to rare variants conferring high to moderate risk, we tested for an association between the c.

View Article and Find Full Text PDF

The accurate detection of low-allelic variants is still challenging, particularly for the identification of somatic mosaicism, where matched control sample is not available. High throughput sequencing, by the simultaneous and independent analysis of thousands of different DNA fragments, might overcome many of the limits of traditional methods, greatly increasing the sensitivity. However, it is necessary to take into account the high number of false positives that may arise due to the lack of matched control samples.

View Article and Find Full Text PDF

Schwannomatosis is a tumor predisposition syndrome characterized by development of multiple intracranial, spinal, and peripheral schwannomas. Constitutional alterations in either SMARCB1 or LZTR1 on 22q are responsible of the phenotype. We describe a 34-year-old woman who developed multiple benign peripheral sheath tumors and a uterine leiomyosarcoma.

View Article and Find Full Text PDF

Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production.

View Article and Find Full Text PDF

Schwannomatosis is characterized by the development of multiple non-vestibular, non-intradermal schwannomas. Constitutional inactivating variants in two genes, SMARCB1 and, very recently, LZTR1, have been reported. We performed exome sequencing of 13 schwannomatosis patients from 11 families without SMARCB1 deleterious variants.

View Article and Find Full Text PDF