Adv Sci (Weinh)
November 2024
Aberrant condensation and localization of the RNA-binding protein (RBP) fused in sarcoma (FUS) occur in variants of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Changes in RBP function are commonly associated with changes in axonal cytoskeletal organization and branching in neurodevelopmental disorders. Here, we asked whether branching defects also occur in vivo in a model of FUS-associated disease.
View Article and Find Full Text PDFStructured illumination can reject out-of-focus signal from a sample, enabling high-speed and high-contrast imaging over large areas with widefield detection optics. However, this optical sectioning technique is currently limited by image reconstruction artefacts and poor performance at low signal-to-noise ratios. We combine multicolour interferometric pattern generation with machine learning to achieve high-contrast, real-time reconstruction of image data that is robust to background noise and sample motion.
View Article and Find Full Text PDFAlthough fusogenic liposomes offer a promising approach for the delivery of antibiotic payloads across the cell envelope of Gram-negative bacteria, there is still a limited understanding of the individual nanocarrier interactions with the bacterial target. Using super-resolution microscopy, we characterize the interaction dynamics of positively charged fusogenic liposomes with Gram-negative () and Gram-positive () bacteria. The liposomes merge with the outer membrane (OM) of Gram-negative bacteria, while attachment or lipid internalization is observed in Gram-positive cells.
View Article and Find Full Text PDFChallenging the basis of our chemical intuition, recent experimental evidence reveals the presence of a new type of intrinsic fluorescence in biomolecules that exists even in the absence of aromatic or electronically conjugated chemical compounds. The origin of this phenomenon has remained elusive so far. In the present study, we identify a mechanism underlying this new type of fluorescence in different biological aggregates.
View Article and Find Full Text PDFThe reliable and regular modification of the surface properties of substrates plays a crucial role in material research and the development of functional surfaces. A key aspect of this is the development of the surface pores and topographies. These can confer specific advantages such as high surface area as well as specific functions such as hydrophobic properties.
View Article and Find Full Text PDFDuring aging, proteostasis capacity declines and distinct proteins become unstable and can accumulate as protein aggregates inside and outside of cells. Both in disease and during aging, proteins selectively aggregate in certain tissues and not others. Yet, tissue-specific regulation of cytoplasmic protein aggregation remains poorly understood.
View Article and Find Full Text PDFDendrites and dendritic spines are the essential cellular compartments in neuronal communication, conveying information through transient voltage signals. Our understanding of these compartmentalized voltage dynamics in fine, distal neuronal dendrites remains poor due to the difficulties inherent to accessing and stably recording from such small, nanoscale cellular compartments for a sustained time. To overcome these challenges, we use nanopipettes that permit long and stable recordings directly from fine neuronal dendrites.
View Article and Find Full Text PDFMonomeric alpha-synuclein (aSyn) is a well characterised protein that importantly binds to lipids. aSyn monomers assemble into amyloid fibrils which are localised to lipids and organelles in insoluble structures found in Parkinson's disease patient's brains. Previous work to address pathological aSyn-lipid interactions has focused on using synthetic lipid membranes, which lack the complexity of physiological lipid membranes.
View Article and Find Full Text PDFThe ability to quantify structural changes of the endoplasmic reticulum (ER) is crucial for understanding the structure and function of this organelle. However, the rapid movement and complex topology of ER networks make this challenging. Here, we construct a state-of-the-art semantic segmentation method that we call ERnet for the automatic classification of sheet and tubular ER domains inside individual cells.
View Article and Find Full Text PDFDespite the enormous advancements in nanomedicine research, a limited number of nanoformulations are available on the market, and few have been translated to clinics. An easily scalable, sustainable, and cost-effective manufacturing strategy and long-term stability for storage are crucial for successful translation. Here, we report a system and method to instantly formulate NF achieved with a nanoscale polyelectrolyte coacervate-like system, consisting of anionic pseudopeptide poly(l-lysine isophthalamide) derivatives, polyethylenimine, and doxorubicin (Dox) via simple "mix-and-go" addition of precursor solutions in seconds.
View Article and Find Full Text PDFAngew Chem Weinheim Bergstr Ger
February 2023
The solvation shell is essential for the folding and function of proteins, but how it contributes to protein misfolding and aggregation has still to be elucidated. We show that the mobility of solvation shell HO molecules influences the aggregation rate of the amyloid protein α-synuclein (αSyn), a protein associated with Parkinson's disease. When the mobility of HO within the solvation shell is reduced by the presence of NaCl, αSyn aggregation rate increases.
View Article and Find Full Text PDFThe culturing and investigation of individual marine specimens in lab environments is crucial to further our understanding of this highly complex ecosystem. However, the obtained results and their relevance are often limited by a lack of suitable experimental setups enabling controlled specimen growth in a natural environment while allowing for precise monitoring and in-depth observations. In this work, we explore the viability of a microfluidic device for the investigation of the growth of the alga to enable high-resolution imaging by confining the samples, which usually grow in 3D, to a single 2D plane.
View Article and Find Full Text PDFIn Parkinson's disease and other synucleinopathies, α-synuclein misfolds and aggregates. Its intrinsically disordered nature, however, causes it to adopt several meta-stable conformations stabilized by internal hydrogen bonding. Because they interconvert on short timescales, monomeric conformations of disordered proteins are difficult to characterize using common structural techniques.
View Article and Find Full Text PDFThe solvation shell is essential for the folding and function of proteins, but how it contributes to protein misfolding and aggregation has still to be elucidated. We show that the mobility of solvation shell H O molecules influences the aggregation rate of the amyloid protein α-synuclein (αSyn), a protein associated with Parkinson's disease. When the mobility of H O within the solvation shell is reduced by the presence of NaCl, αSyn aggregation rate increases.
View Article and Find Full Text PDFWhile in the vast majority of cases fluorescence in biological matter has been attributed to aromatic or conjugated groups, peptides associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, or Huntington's, have been recently shown to display an intrinsic visible fluorescence even in the absence of aromatic residues. This has called the attention of researchers from many different fields, trying to understand the origin of this peculiar behavior and, at the same time, motivating the search for novel strategies to control the optical properties of new biophotonic materials. Today, after nearly 15 years of its discovery, there is a growing consensus about the mechanism underlying this phenomenon, namely, that electronic interactions between non-optically active molecules can result in supramolecular assemblies that are fluorescent.
View Article and Find Full Text PDFSuper-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes.
View Article and Find Full Text PDFHeterochromatin maintains genome integrity and function, and is organised into distinct nuclear domains. Some of these domains are proposed to form by phase separation through the accumulation of HP1ɑ. Mouse heterochromatin contains noncoding major satellite repeats (MSR), which are highly transcribed in mouse embryonic stem cells (ESCs).
View Article and Find Full Text PDFThe aggregation of Aβ42 is a hallmark of Alzheimer's disease. It is still not known what the biochemical changes are inside a cell which will eventually lead to Aβ42 aggregation. Thermogenesis has been associated with cellular stress, the latter of which may promote aggregation.
View Article and Find Full Text PDFConventional in vitro aggregation assays often involve tagging with extrinsic fluorophores, which can interfere with aggregation. We propose the use of intrinsic amyloid fluorescence lifetime probed using two-photon excitation and represented by model-free phasor plots as a label-free assay to characterize the amyloid structure. Intrinsic amyloid fluorescence arises from the structured packing of β-sheets in amyloids and is independent of aromatic-based fluorescence.
View Article and Find Full Text PDFDespite being the target of extensive research efforts due to the COVID-19 (coronavirus disease 2019) pandemic, relatively little is known about the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication within cells. We investigate and characterize the tightly orchestrated virus assembly by visualizing the spatiotemporal dynamics of the four structural SARS-CoV-2 proteins at high resolution. The nucleoprotein is expressed first and accumulates around folded endoplasmic reticulum (ER) membranes in convoluted layers that contain viral RNA replication foci.
View Article and Find Full Text PDFHuntington's disease is a dominantly inherited neurodegenerative disorder caused by the expansion of a CAG repeat, encoding for the amino acid glutamine (Q), present in the first exon of the protein huntingtin. Over the threshold of Q39 HTT exon 1 (HTTEx1) tends to misfold and aggregate into large intracellular structures, but whether these end-stage aggregates or their on-pathway intermediates are responsible for cytotoxicity is still debated. HTTEx1 can be separated into three domains: an N-terminal 17 amino acid region, the polyglutamine (polyQ) expansion and a C-terminal proline rich domain (PRD).
View Article and Find Full Text PDFIn this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death.
View Article and Find Full Text PDFFluorescence in biological systems is usually associated with the presence of aromatic groups. Here, by employing a combined experimental and computational approach, we show that specific hydrogen bond networks can significantly affect fluorescence. In particular, we reveal that the single amino acid L-glutamine, by undergoing a chemical transformation leading to the formation of a short hydrogen bond, displays optical properties that are significantly enhanced compared with L-glutamine itself.
View Article and Find Full Text PDF