Pathogenic variants in TRIO, encoding the guanine nucleotide exchange factor, are associated with two distinct neurodevelopmental delay phenotypes: gain-of-function missense mutations within the spectrin repeats are causative for a severe developmental delay with macrocephaly (MIM: 618825), whereas loss-of-function missense variants in the GEF1 domain and truncating variants throughout the gene lead to a milder developmental delay and microcephaly (MIM: 617061). In three affected family members with mild intellectual disability/NDD and microcephaly, we detected a novel heterozygous TRIO variant at the last coding base of exon 31 (NM_007118.4:c.
View Article and Find Full Text PDFThe clinical diagnosis criteria for CHARGE syndrome have been revised several times in the last 25 years. Variable expressivity and reduced penetrance are known, particularly in mild and familial cases. Therefore, it has been proposed to include the detection of a pathogenic CHD7 variant as a major diagnostic criterion.
View Article and Find Full Text PDFThe evolutionary conserved Polo-like kinase 4 (PLK4) is essential for centriole duplication, spindle assembly, and de novo centriole formation. In man, homozygous mutations in PLK4 lead to primary microcephaly, altered PLK4 expression is associated with aneuploidy in human embryos. Here, we report on a consanguineous four-generation family with 8 affected individuals compound heterozygous for a novel missense variant, c.
View Article and Find Full Text PDFNotch signaling is an established developmental pathway for brain morphogenesis. Given that Delta-like 1 (DLL1) is a ligand for the Notch receptor and that a few individuals with developmental delay, intellectual disability, and brain malformations have microdeletions encompassing DLL1, we hypothesized that insufficiency of DLL1 causes a human neurodevelopmental disorder. We performed exome sequencing in individuals with neurodevelopmental disorders.
View Article and Find Full Text PDFA genome-wide evaluation of the effects of ionizing radiation on mutation induction in the mouse germline has identified multisite de novo mutations (MSDNs) as marker for previous exposure. Here we present the results of a small pilot study of whole genome sequencing in offspring of soldiers who served in radar units on weapon systems that were emitting high-frequency radiation. We found cases of exceptionally high MSDN rates as well as an increased mean in our cohort: While a MSDN mutation is detected in average in 1 out of 5 offspring of unexposed controls, we observed 12 MSDNs in altogether 18 offspring, including a family with 6 MSDNs in 3 offspring.
View Article and Find Full Text PDFOver 90% of patients with Nijmegen breakage syndrome (NBS), a hereditary cancer disorder, are homoallelic for a 5 bp deletion in the NBN gene involved in the cellular response to DNA damage. This hypomorphic mutation leads to a carboxy-terminal protein fragment, p70-nibrin, with some residual function. Average age at malignancy, typically lymphoma, is 9.
View Article and Find Full Text PDFFanconi anemia (FA) cells exhibit hypersensitivity to DNA interstrand cross-links (ICLs) and high levels of chromosome instability. FA gene products have been shown to functionally or physically interact with BRCA1, RAD51 and the MRE11/RAD50/NBS1 complex, suggesting that the FA complex may be involved in the repair of DNA double-strand breaks (DSBs). Here, we have investigated specifically the function of the FA group A protein (FANCA) in the repair of DSBs in mammalian cells.
View Article and Find Full Text PDFNijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder characterized by predisposition to hematopoietic malignancy, cell-cycle checkpoint defects, and ionizing radiation sensitivity. NBS is caused by a hypomorphic mutation of the NBS1 gene, encoding nibrin, which forms a protein complex with Mre11 and Rad50, both involved in DNA repair. Nibrin localizes to chromosomal sites of class switching, and B cells from NBS patients show an enhanced presence of microhomologies at the sites of switch recombination.
View Article and Find Full Text PDFThe human genetic disorder, Nijmegen breakage syndrome, is characterized by radiosensitivity, immunodeficiency, chromosomal instability and an increased risk for cancer of the lymphatic system. The NBS1 gene codes for a protein, nibrin, involved in the processing/repair of DNA double strand breaks and in cell cycle checkpoints. Most patients are homozygous for a founder mutation, a 5 bp deletion, which might not be a null mutation, as functionally relevant truncated nibrin proteins are observed, at least in vitro.
View Article and Find Full Text PDF