Publications by authors named "Gabriele Hakim"

GLUT1 is the predominant glucose transporter in leukemia cells, and the modulation of glucose transport activity by cytokines, oncogenes or metabolic stresses is essential for their survival and proliferation. However, the molecular mechanisms allowing to control GLUT1 trafficking and degradation are still under debate. In this study we investigated whether plasma membrane cholesterol depletion plays a role in glucose transport activity in M07e cells, a human megakaryocytic leukemia line.

View Article and Find Full Text PDF

Organic and inorganic selenium compounds were used to examine whether low selenium concentration is able to trigger apoptotic degeneration in a human neuron cell line in vitro and to explore changes in reactive oxygen and nitrogen species and antioxidant protein content during the apoptotic processes. The results indicated that: (1) SKNBE neuroblastoma cells treated with sodium selenite, sodium selenate and seleno-methionine (0.1, 0.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS) play critical roles in vascular pathophysiology and in hematological malignancies. VEGF is supposed to utilize ROS as messenger intermediates downstream of the VEGF receptor-2. NAD(P)H oxidase (Nox) family is a major source of cellular ROS and is implicated in increased ROS production in tumor cells.

View Article and Find Full Text PDF
Article Synopsis
  • Glycolytic cancer cells depend on a process called trans-plasma membrane electron transport (tPMET) for survival, making it a potential target for new cancer drugs.
  • The study tested various compounds to see how they affect the growth of human myelogenous leukemia cells, tPMET activity, and levels of NAD(P)H fluorescence.
  • The findings highlight tPMET's crucial role in keeping leukemic cells alive, suggesting it could be a promising target for anti-leukemic therapies.
View Article and Find Full Text PDF

The mechanism involved in the prosurvival effect of interleukin-3 on the human acute myeloid leukaemia cell line M07e is investigated. A decrease in intracellular reactive oxygen species (ROS) content, glucose transport activity and cell survival was observed in the presence of inhibitors of plasma membrane ROS sources, such as diphenylene iodonium and apocynin, and by small interference RNA for Nox2. Moreover, IL-3 incubation stimulated the synthesis of Nox2 cytosolic sub-unit p47phox and glucose transporter Glut1.

View Article and Find Full Text PDF

In the human acute myeloid leukemia cell line M07e, the growth factor interleukin-3 (IL-3) induces ROS formation, positively affecting Glut1-mediated glucose uptake and cell survival. The effect of IL-3 and exogenous hydrogen peroxide on cell viability seems to be mediated through inhibition of the cell death commitment, as shown by apoptotic markers such as caspase activities, apoptotic nuclei, and changes in the amount of proteins belonging to the Bcl-2 family. The pivotal role of ROS is confirmed using various antioxidants, such as EUK-134, ebselen, TEMPO, and hydroxylamine probe.

View Article and Find Full Text PDF

The discovery of superoxide-generating enzymes homologues of phagocytic NAD(P)H oxidase, the Nox family, has led to the concept that reactive oxygen species (ROS) are 'intentionally' generated with biological functions in various cell types. In this study, by treating an acute leukaemic cell line with different antioxidants, ROS generation was shown to be crucially involved in the modulation of glucose transport (mediated by Glut1), which is frequently up-regulated in cancer cells. Then, this study tried to elucidate ROS source(s) and mechanisms by which ROS are involved in Glut1 activity regulation.

View Article and Find Full Text PDF

In M07e cells, a human megakaryocytic leukaemia line, reactive oxygen species (ROS) are generated in response to cytokines acting as intracellular messengers to modulate glucose transport. The aim of this work was to study the signal cascade involved in the acute glucose transport activation in cells exposed to growth factors, such as granulocyte macrophage-colony stimulation factor (GM-CSF) and thrombopoietin (TPO), to better understand some aspects of the aberrant proliferation in leukaemia. Results confirm ROS involvement in modulation of glucose transport in this cell line.

View Article and Find Full Text PDF

In a previous paper, we demonstrated that tissue trans fatty acids can not only derive from the diet but also be endogenously formed. The central focus of this study was to prove that the in vivo isomerization occurs via a radical process. Two different models of radical insult were used: CCl(4) and AAPH injection to rats fed a diet completely free of trans isomers.

View Article and Find Full Text PDF

alpha1-Adrenergic stimulation triggers glucose transport in the heart through the translocation of glucose transporter (GLUT) 1 and GLUT4 to plasma membranes, mediated by protein kinase C (PKC) isoforms. Evidence is emerging that dietary polyphenolic compounds may act not only as antioxidants but also by modulating PKC-mediated signaling. This study evaluated the ability of a green tea extract (GTE) to modulate alpha1-adrenoceptor-mediated glucose transport in rat cardiomyocytes.

View Article and Find Full Text PDF

In leukemic cells, glucose transport is activated by SCF and H2O2 through a common signal cascade involving Akt, PLCgamma, Syk, and the Src family, in this order. An explanation can be provided by the phosphorylation of c-kit, the SCF receptor, elicited by either SCF or H2O2. Moreover, antioxidants prevent the SCF effect on glucose transport, confirming the involvement of H2O2 in the pathway leading to glucose-transport activation and suggesting a potential role for reactive oxygen species in leukemia proliferation.

View Article and Find Full Text PDF

The aim of this work was to investigate the role of cytosolic calcium and calmodulin-dependent systems in the activation of glucose uptake in the human megakaryocytic cell line M07e. Glucose uptake was significantly raised by elevation of cytosolic Ca(2+) concentration ([Ca(2+)](c)) with thapsigargin, this effect being additive to the activation induced by cytokines (SCF, GM-CSF and TPO) and hydrogen peroxide. Intracellular Ca(2+) chelation by BAPTA decreased basal and activated glucose uptake in a dose-dependent manner.

View Article and Find Full Text PDF

Glucose transport into cells may be regulated by a variety of conditions, including ischemia. We investigated whether some enzymes frequently involved in the metabolic adaptation to ischemia are also required for glucose transport activation. Ischemia was simulated by incubating during 3 h H9c2 cardiomyoblasts in a serum- and glucose-free medium in hypoxia.

View Article and Find Full Text PDF

This brief review is focused on the short-term regulation of the facilitative glucose transporter GLUT1 in megakaryocytic cells M07e. The effects of cytokines such as TPO, GM-CSF and SCF and of a low dose of H202 on the transport activity and its kinetic parameters are compared. The possible mechanisms and the signalling pathways involved in the glucose uptake activation are discussed.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) has been increasingly recognised as intracellular messengers in signal transduction following receptor activation by a variety of bioactive peptides including growth factors, cytokines and hormones. In this study ROS production and glucose transport activity were evaluated in the growth factor dependent M07e cells and in B1647 cells, not requiring additional hematopoietic cytokines for growth: the aim was to investigate whether ROS could be involved in the regulation of Glut1-mediated glucose uptake in both cell lines. The effect of the synthetic superoxide and hydrogen peroxide scavenger EUK-134 on DOG uptake activity and intracellular ROS formation supports the concept of reactive oxygen species as signalling molecules.

View Article and Find Full Text PDF

Glucose transport activity and its possible regulation by reactive oxygen species in two Glut1-expressing megakaryocytic cell lines, MO7e and B1647, differing in cytokine sensitivity were compared. Results show that: (1) In MO7e cells, glucose transport rate increased in response to thrombopoietin, granulocyte-macrophage colony-stimulating factor, or stem cell factor, due to a decreased Km. (2) A higher Vmax value was determined in B1647 cells, owing to the relative higher abundance of Glut1 on the plasmalemma; in these cells no change in glucose transport rate was observed on cytokine treatment.

View Article and Find Full Text PDF

This work aims to elucidate the mechanisms involved in the early activation of glucose transport in hematopoietic M07e cells by stem cell factor (SCF) and a reactive oxygen species (ROS) as H2O2. SCF and H2O2 increase Vmax for glucose transport; this enhancement is due to a higher content in GLUT1 in plasma membranes, possibly through a translocation from intracellular stores. Inhibitors of tyrosine kinases or phospholipase C (PLC) remove glucose transport enhancement and prevent translocation.

View Article and Find Full Text PDF

This study demonstrates that oxidative stress induced in rat thymocytes by the hydrophilic 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH), the lipophilic cumene hydroperoxide (CumOOH) and the freely diffusible H2O2 is associated with an activation of facilitative glucose transport rate, mediated by GLUT1, the major transporter in this cell type. We compared the effects of the three tested radical sources on the kinetic transport parameters, showing that the transport rate enhancement in the treated cells can be ascribed to an increase in the Vmax value, apart from the site of generation of the oxidative stress. The enhancement of glucose transport by the three oxidants in thymocytes was significantly attenuated both by protein tyrosine kinase inhibitors as genistein and tyrphostin A23 and by U73122, a phospholipase C inhibitor.

View Article and Find Full Text PDF

Doxorubicin (DOX) has not only chronic, but also acute toxic effects in the heart, ascribed to the generation of reactive oxygen species (ROS). Focusing on the DOX-induced early biochemical changes in rat cardiomyocytes, we demonstrated that lipid peroxidation is an early event, in fact conjugated diene production increased after 1-h DOX exposure, while cell damage, evaluated as lactate dehydrogenase (LDH) release, was observed only later, when at least one third of the cell antioxidant defences were consumed. Cell pre-treatment with alpha-tocopherol (TC) inhibited both conjugated diene production and LDH release.

View Article and Find Full Text PDF