Publications by authors named "Gabriele Buchholtz"

Genomic data holds huge potential for medical progress but requires strict safety measures due to its sensitive nature to comply with data protection laws. This conflict is especially pronounced in genome-wide association studies (GWAS) which rely on vast amounts of genomic data to improve medical diagnoses. To ensure both their benefits and sufficient data security, we propose a federated approach in combination with privacy-enhancing technologies utilising the findings from a systematic review on federated learning and legal regulations in general and applying these to GWAS.

View Article and Find Full Text PDF

Background: The collection, storage, and analysis of large data sets are relevant in many sectors. Especially in the medical field, the processing of patient data promises great progress in personalized health care. However, it is strictly regulated, such as by the General Data Protection Regulation (GDPR).

View Article and Find Full Text PDF

Clinical time-to-event studies are dependent on large sample sizes, often not available at a single institution. However, this is countered by the fact that, particularly in the medical field, individual institutions are often legally unable to share their data, as medical data is subject to strong privacy protection due to its particular sensitivity. But the collection, and especially aggregation into centralized datasets, is also fraught with substantial legal risks and often outright unlawful.

View Article and Find Full Text PDF